Thu gọn :
`(x-2)^2+2(x-2)(2x+2)+4(x+1)^2`
Thu gọn : ( x - 1 )^2 ( x + 2 ) - ( x - 2 )(x^2 + 2x + 4 )
\(\left(x-1\right)^2\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right).\)
\(=\left(x^2-2x+1\right)\left(x+2\right)-\left(x^3-8\right)\)
\(=x^3+2x^2-2x^2-4x+x+2-x^3+8\)
\(=-3x+8\)
Thu gọn các biểu thức sau:
A=(x-1)^3-x(x-2)^2+1
B=(-x-2)^3+(2x-4)(x^2+2x+4)- x^2(x-6)
A = (x - 1)3 - x(x - 2)2 + 1
A = (x - 1)(x2 - 2x + 1) - x(x - 2)2 + 1
A = x(x2 - 2x + 1) - (x2 - 2x + 1) - x(x - 2)2 + 1
A = x3 - 2x2 + x - (x2 - 2x + 1) - x(x2 - 2x.2 + 22) + 1
A = x3 - 2x2 + x - (x2 - 2x + 1) - (x3 - 4x2 + 4x) + 1
A = x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x + 1
A = (x3 - x3) + (-2x2 - x2 + 4x2) + (x + 2x - 4x) + (-1 + 1)
A = x2 - x
B = (-x - 2)3 + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = (-x - 2)[(-x2) - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = -x[(-x)2 - 2.(-x).2 + 22] - 2[(-x)2 - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = -(x3 + 4x2 + 4x) - (2x2 + 4x + 8) + 2x(x2 + 2x + 4) - 4(x2 + 2x + 4) - x2(x - 6)
B = -(x3 + 4x2 - 4x) - (2x2 + 4x + 8) + 2x3 + 4x2 + 8x - (x2 + 8x + 16) - (x3 - 6x2)
B = -x3 - 4x2 + 4x - 2x2 - 4x - 8 + 2x3 + 4x2 + 8x - x2 - 8x - 16 - x3 + 6x2
B = (-x3 + 2x3 - x3) + (-4x2 - 2x2 + 4x2 - x2 + 6x2) + (-4x - 8x + 8x - 8x) + (-8 - 16)
B = -12x - 24
Thu gọn biểu thức:
a) (x^2-1)(x+2)-(x-2)(x^2+2x+4)
b) (x-2)(x+3) - (x-5)(x+5) - (2x-3)
c) (3x-1)^2 + (2x+1)^2 - 2(3x-1)(2x+1)
thu gọn biểu thức sau:
(x^2-1) (x+2) - (x-2) (x^2+2x+4)
Cho f(x) -3x^2-2x+x^2(x-4)+2x^3+4x^2-5;
p(x)= 2x^4+2x^2(x+3)-2x^3(x+1)-5x^2-1 .
Thu gọn và tìm nghiệm của đa thức f(x); p(x)
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
Đa thức P(x) = 2x^4 + 3x^2 − x^3 − 3x^4 − x^2 − 2x + 1 sau khi được thu gọn và sắp xếp theo bậc giảm dần của biến là:
A. P(x) = x^4 − x^3 + 2x^2 − 2x + 1
B.P(x) = −x^4 − x^3 + 3x^2 − 2x + 1
C. P(x) = −x^4 − x^3 + 2x^2 − 2x + 1
D. P(x) = x^4 − x^3 − 2x^2 − 2x + 1
thu gọn đa thức 2x^3+2x^5-5x^7-7x^2-11x^3+2, 5x^4-9+4, 2x^2+1, 5x^4+13x^8
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`