Giải phương trình: \(6x^4+25x^3+12x^2-25x+6=0\)
giải phương trình :3 lại 1 con khó nữa , mn giúp e vs
6x4+ 25x3+12x2-25x+6 =0
T.T
Mình giải cho bạn rồi, bạn vào xem lại lời giải nhé:
http://olm.vn/hoi-dap/question/430226.html
Giải phương trình \(x^4-3x^3-6x^2+3x+1=0\)
\(6x^4+25x^3+12x^2-25x+6=0\)
\(6x^4+25x^3+12x^2-25x+6=0.\)
\(\Leftrightarrow\left(2x^2+x-2\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)\left(x+3\right)\left(3x-1\right)=0\)
giải pt
6x4+25x3+12x2-25x+6 = 0
\(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow\) \(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\) \(6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left[6x^2\left(x+3\right)-5x\left(x+3\right)+x+3\right]=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\) \(x+2=0\) hoặc \(x+3=0\) hoặc \(2x-1=0\) hoặc \(3x-1=0\)
\(\Leftrightarrow\) \(x=-2\) hoặc \(x=-3\) hoặc \(x=\frac{1}{2}\) hoặc \(x=\frac{1}{3}\)
Vậy, tập nghiệm của pt là \(S=\left\{-2;-3;\frac{1}{2};\frac{1}{3}\right\}\)
Giải pt: 6x4 + 25x3 + 12x2 - 25x + 6 = 0
đây là pt đỗi xứng bậc chẵn bạn ơi
cos cachs giải đó bạn
(+) Kiểm tra x = 0 , sau đó chia cả hai vế cho x^2
(+) đặt x- 1/x = a => x^2 + 1/x^2 = a^2 + 2
Thay vô giải pt bậc hai
à ha , tự nhiên tui quên mất ^^! , thks nhá , k cần giải nữa đâu , bik giải gòi
GIAI PT 6x^4 +25x^3+12x^2 -25x +6=0
Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)
6x4+25x3+12x2-25x+6=0
Bạn dùng phương pháp phân tích đa thức thành nhân tử sẽ đc :
(2x-1).(x+3).(x+2).(3x-1) = 0
<=> x=1/2 hoặc x=-3 hoặc x=-2 hoặc x=1/3
Vậy .............
Tk mk nha
\(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow\)\(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(x+3\right)\left(6x^2-2x-3x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
P/S:lm tiếp nha x = -2; x = -3; x = 1/2; x = 1/3
a, \(2x^4-9x^3+14x^2-9x+2=0\)
b, \(6x^4+25x^3+12x^2-25x+6=0\)
\(b.6x^4+25x^3+12x^2-25x+6=0\\\Leftrightarrow 6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\\\Leftrightarrow 6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\\\Leftrightarrow \left(6x^3+13x^2-14x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^3+18x^2-5x^2-15x+x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)\right]\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-5x+1\right)\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-3x-2x+1\right)\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[3x\left(2x-1\right)-\left(2x-1\right)\right]\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(2x-1\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-1=0\\x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{1}{2}\\x=-3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};\frac{1}{2};-3;-2\right\}\)
\(2x^4-9x^3+14x^2-9x+2=0\\\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\\\Leftrightarrow 2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\\\Leftrightarrow \left(2x^3-7x^2+7x-2\right)\left(x-1\right)=0\\\Leftrightarrow \left[2\left(x^3-1\right)-7x\left(x-1\right)\right]\left(x-1\right)=0\\\Leftrightarrow \left(x-1\right)^2\left[2\left(x^2+x+1\right)-7x\right]=0\\\Leftrightarrow \left(2x^2+2x+2-7x\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-5x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-x-4x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x-1\right)^2=0\\\Leftrightarrow \left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=1\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{2};1\right\}\)
Giải phương trình sau:
1) \(2x^4-9x^3+14x^2-9x+2=0\)
2) \(6x^4+25x^3+12x^2-25x+6=0\)
3) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)
4) \(2x^3-3x^2+3x+8=0\)
5) \(x^4+2x^3+x^2=0\)
giúp tôi với
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
1) \(2x^4-9x^3+14x^2-9x+2=0\)
\(\Leftrightarrow2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\)
\(\Leftrightarrow2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-7x^2+7x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[2\left(x^3-1\right)-7x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x+2-7x\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-x-4x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
hoặc \(2x-1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=1\)hoặc \(x=\frac{1}{2}\)hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;\frac{1}{2};2\right\}\)
2) \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4-3x^3+28x^3-14x^2+26x^2-13x-12x+6=0\)
\(\Leftrightarrow3x^3\left(2x-1\right)+14x^2\left(2x-1\right)+13x\left(2x-1\right)-6\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^3+14x^2+13x-6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^3-x^2+15^2-5x+18x-6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(3x-1\right)+5x\left(3x-1\right)+6\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\)\(2x-1=0\)
hoặc \(3x-1=0\)
hoặc \(x+2=0\)
hoặc \(x+3=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)hoặc \(x=\frac{1}{3}\)hoặc \(x=-2\)hoặc \(x=-3\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2};\frac{1}{3};-2;-3\right\}\)
3) Ktra lại đề nhé :D
4) \(x^3-3x^2+3x+8=0\)
\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(TM\right)\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(L\right)\end{cases}}\)
Vậy x = -1
5) \(x^4+2x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)
Bài 1: Giải phương trình
a) (x+3)4 + (x+5)4 = 16
b) 6x4 + 25x3 + 12x - 25x+ 6= 0
c) 9x4 - 15x3 + 28x2 -20x+16 = 0
d) x4 + 7x2 - 12x+5 =0
e) x5= x4 + x3 + x2 + x+2
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
\(\text{a) }\left(x+3\right)^4+\left(x+5\right)^4=16\\ \Leftrightarrow\left(x^2+6x+9\right)^2+\left(x^2+10x+25\right)^2=16\\ \Leftrightarrow x^4+36x^2+81+12x^3+18x^2+108x+x^4+100x^2+625+20x^3+50x^2+500x=16\\ \Leftrightarrow2x^4+32x^3+204x^2+608x+690=0\\ \Leftrightarrow x^4+16x^3+102x^2+304x+345=0\\ \Leftrightarrow x^4+5x^3+11x^3+55x^2+47x^2+235x+373x+69x+345=0\\ \Leftrightarrow\left(x^4+5x^3\right)+\left(11x^3+55x^2\right)+\left(47x^2+235x\right)+\left(69x+345\right)=0\\ \Leftrightarrow x^3\left(x+5\right)+11x^2\left(x+5\right)+47x\left(x+5\right)+69\left(x+5\right)=0\\ \Leftrightarrow\left(x^3+11x^2+47x+69\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x^3+3x^2+8x^2+24x+23x+69\right)\left(x+5\right)=0\\ \Leftrightarrow\left[\left(x^3+3x^2\right)+\left(8x^2+24x\right)+\left(23x+69\right)\right]\left(x+5\right)=0\\ \Leftrightarrow\left[x^2\left(x+3\right)+8x\left(x+3\right)+23\left(x+3\right)\right]\left(x+5\right)=0\\ \Leftrightarrow\left(x^2+8x+23\right)\left(x+3\right)\left(x+5\right)=0\)\(\Leftrightarrow\left(x^2+8x+16+7\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[\left(x+4\right)^2+7\right]\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+5\right)=0\left(\text{Vì }\left(x+4\right)^2+7\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{-3;-5\right\}\)