Tìm cặp số nguyên (x,y) thỏa mãn:
|x+4|+|y-2|=3
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm cặp số nguyên dương chẵn x; y thỏa mãn biểu thức x/2 + 3/y = 5/4
Tìm các cặp số nguyên (x;y) thỏa mãn: x^2 - xy - y = 4
\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=3\)
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x-y-1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -4 | 0 | -4 | 0 |
Vậy \(\left(x;y\right)=\left(-4;-4\right);\left(-2;0\right);\left(0;-4\right);\left(2;0\right)\)
Tìm các cặp số nguyên (x;y) thỏa mãn: x^4-y^4=3y^2 1
Tìm cặp số nguyên (x, y) thỏa mãn : |x+3|+|x-1|=3-y^2-2y
Ta có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)
\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)
Các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)
Tìm các cặp số nguyên (x,y) thỏa mãn y2+y=x4+x3+x2+x
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(^{y^2+y=x^4+x^3+x^2+x}\)
Tìm cặp số nguyên tố x;y thỏa mãn (x - 2)2 . (y - 3)2 = 4
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn: \(x^2+x+3=y^2\)
Nếu \(x< -3\) thì \(x^2+x+3< x^2\) và \(x^2+x+3>\left(x+1\right)^2\), vô lý.
Nếu \(x>2\) thì \(x^2+x+3>x^2\) và \(x^2+x+3< \left(x+1\right)^2\), cũng vô lý.
Do đó \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
Thử từng giá trị, ta thấy \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-3\right)\right\}\) là các cặp số thỏa ycbt.