Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh:
a. AH2= BH.CH
b. AH.BC= AB.AC
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.kẻ đường cao AH (H thuộc BC).Câu a, chứng minh tam giác ABC đồng dạng với tam giác HBA và AB.AC=AH.BC
Câu b, chứng minh AH2=HB.HC
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung
$\widehat{BAC}=\widehat{BHA}=90^0$
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)
b.
Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$
$\Rightarrow AH^2=BH.CH$.
Cho tam giác ABC vuông tại A có AH là đường cao . Chứng minh
a) AB2=BC.BH
b) AH2=BH.CH
c) \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
d) AH.BC=AB.AC
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
AH.BC = AB.AC
S = A B C 1 2 A H . B C = 1 2 A B . A C
Þ AH.BC = AB.AC (ĐPCM)
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABD và ΔCBE có
\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD~ΔCBE
Cho tam giác ABC vuông ở A.Kẻ ba đường cao AH,BK,CM
a) CM: AB.AC=AH.BC?
b) CM: AC2=HC.BC
c) AH2=HB.HC
a) Xét ΔABH và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{B}\) chung
→ΔABH ∼ ΔABC(g-g)(1)
\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AH.BC\)
b) Vì ΔABH ∼ ΔABC (cmt)
\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\rightarrow AC.AC=HC.BC\)
\(\Rightarrow AC^2=HC.BC\)
c) Xét ΔAHC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{AHC}=\widehat{BAC}=90^0\)
→ΔAHC ∼ ΔABC(g-g)(2)
Từ (1) và (2)→ΔABH ∼ ΔAHC
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\rightarrow AH.AH=HB.HC\)
\(\Rightarrow AH^2=HB.HC\)
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(3\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(4\right)\)
Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN đồng dạng với ΔACB
c: Ta có: ΔABC vuông tại A
mà AK là đường trung tuyến
nên AK=KC=KB
Ta có: KA=KC
=>ΔKAC cân tại K
=>\(\widehat{KAC}=\widehat{KCA}\)
Ta có: ΔAMN đồng dạng với ΔACB
=>\(\widehat{ANM}=\widehat{ABC}\)
Ta có: \(\widehat{KAC}+\widehat{ANM}\)
\(=\widehat{ABC}+\widehat{KCA}=90^0\)
=>AK\(\perp\)MN tại I
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)
=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)
=>BH=225/25=9(cm); CH=400/25=16(cm)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot15=12^2\)=144
=>AM=144/15=9,6(cm)
Ta có: AMHN là hình chữ nhật
=>AH=MN
mà AH=12cm
nênMN=12cm
Ta có: ΔANM vuông tại A
=>\(AN^2+AM^2=NM^2\)
=>\(AN^2+9,6^2=12^2\)
=>AN=7,2(cm)
Xét ΔIMA vuông tại I và ΔAMN vuông tại A có
\(\widehat{IMA}\) chung
Do đó: ΔIMA đồng dạng với ΔAMN
=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)
Cho tam giác ABC đường cao AH (H thuộc BC) và AH.BC = AB.AC. Chứng minh tam giác ABC vuông
Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)
Xét \(\Delta AHC\)và \(\Delta ABC\)có :
\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )
Hay \(\Delta ABC\)vuông tại A ( đpcm )
- Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Gọi AH là đường cao của tam giác ABC. Tính AH? (không sử dụng công thức: AH.BC=AB.AC)
Cho tam giác ABC vuông tại A. Đường cao AH. Cho biết AB=15cm,AC=20cm.
a) Chứng minh AH.BC=AB.AC
b) Tính BC,AH
) Từ H kẻ HE vuông góc với AB ở E và HF vuông góc với AC ở F. Chứng minh tam giác AEF đồng dạng với tam giác ACB
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc