tìm nghiệm nguyên dương của phương trình
\(x^2-y^2+2x-4y-10=0\)
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
Giải phương trình: x^2 - y^2 +2x-4y-10 = 0 với x,y nguyên dương
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=13\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=13\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=13\)
Tới đây thì đơn giản rồi nhé
pt <=> \(\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0
Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Đúng rồi \(\left(x+y+3\right)\left(x-y-1\right)=7\)
Nhầm sorry nhá
giải phương trình x2-y2+2x-4y-10=0 với x,y nguyên dương
=> xy( 1-1+2-1) = 10
=> xy(-2) = 10
=> xy = -5
Còn nữa
tìm nghiệm nguyên của phương trình: x^2+2y^2-2x-4y+1=0
tìm nghiệm nguyên của phương trình (x+y)^2+x+4y=0
Tìm nghiệm nguyên dương (x;y) của phương trình \(x^6-2x^3y-x^4+y^2+7=0\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Giải hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
a) Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).
Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)
Biện luận:
Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),
Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).
Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)
Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)
Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:
\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)
Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)
Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)
Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).
b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).
Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)
Vì y là số nguyên dương nên:
\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.
\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).
Vì x,y là các số nguyên dương nên x,y>0. Nên:
\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')
Mặt khác: \(5⋮\left(m+2\right)\)
\(\Rightarrow m+2\inƯ\left(5\right)\)
\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')
Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)
Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.