tìm x để bt sau nhận gtrị nguyên
\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\)
giúp tớ với
tìm x để bt sau nhận gtrị nguyên
\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\)
giúp tớ với tớ đg cần gấp
Trước tiên ta chứng minh:
\(x\sqrt{x}-3\sqrt{x}+3>0\)
\(\Leftrightarrow\left(x\sqrt{x}-2x+\sqrt{x}\right)+\left(2x-4\sqrt{x}+2\right)+1>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)^2+2\left(\sqrt{x}-1\right)^2+1>0\)(đúng )
\(\Rightarrow A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\ge0\)
Ta chứng minh:
\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}< 2\)
\(\Leftrightarrow2x\sqrt{x}-6\sqrt{x}+6-\sqrt{x}>0\)
\(\Leftrightarrow2x\sqrt{x}-7\sqrt{x}+6>0\)
\(\Leftrightarrow\left(2x\sqrt{x}-4x+2\right)+\left(4x-\frac{2.2.7}{4}\sqrt{x}+\frac{49}{16}\right)+\frac{47}{16}>0\)
\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-1\right)^2+\left(2\sqrt{x}-\frac{7}{2}\right)^2+\frac{47}{16}>0\)(đúng )
Từ đây ta được: \(0\le A< 1\)
\(\Rightarrow A=\left\{0;1\right\}\)
Thế A vô tìm x nha. Cái nào thỏa mãn thì lụm không thì bỏ nha.
Cái đoạn kia là: \(0\le A< 2\)nha
tìm x để bt sau nhận gtrị nguyên
\(A=\frac{2}{x+\sqrt{x}+1}\)
giúp tớ vớiiii
2\(\sqrt{x}\)thì làm được bạn nhé
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
1, cho biểu thức
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}+\frac{3\sqrt{x}-2}{1-\sqrt{2}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, tìm đkxd và rút gọn
b, tính giá trị bt khi A khi \(x=3-2\sqrt{2}\)
c, tìm x để \(A=\frac{1}{2}\)
d, tìm \(x\in Z\) để bt A nhận giá trị Nguyên
<3 hóng các cao nhân ra tay nhé :3 !!! giúp mình nhé <3
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
Hình như đề phần rút gọn sai nhé!
\(x+2\sqrt{x}+3\) không thể tách được
Và đa số mình làm mẫu sẽ không như này :\(1-\sqrt{2}\) ,phải có x nữa .
Bạn xem lại đề rồi mình sẽ làm tiếp
tìm x để bt sau nhận gtrị nguyên
\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\)
giải hộ tớ với
3) cho bt P= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
a) rút gọn bt P
b) tìm điều kiện của x để P > 0
c) tìm x nguyên để P nhận giá trị nguyên
giúp mk vs ạ mk cần gấp
a, ĐK: \(x\ge0;x\ne9\)
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)
b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)
\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)
a: Ta có: \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
b: Để P<0 thì \(\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)
cho bt A = \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x ≥ 0, x ≠ 4,x≠9
a, rút gọn A.
b, tính gtr của A khi x=25.
c, tìm các gtr của x để A<1.
d, tìm các gtr của x để A nhận gtr nguyên.
câu a tham khảo ở đây
https://hoc24.vn/cau-hoi/.1145652136620
b) \(x=25\Rightarrow P=\dfrac{\sqrt{25}+1}{\sqrt{25}-3}=\dfrac{6}{2}=3\)
c) \(A< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Rightarrow\dfrac{4}{\sqrt{x}-3}< 0\)
mà \(4>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0\le x< 9,x\ne4\)
Tìm x nguyên để các bt sau nguyên
a,\(\frac{2}{x-1}\)
b,\(\frac{3}{\sqrt{x}+1}\)
c, \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
d,\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Mình giải câu a thôi nha b,c,d tương tự
a/ để \(\frac{2}{x-1}\)nguyên thì x - 1 phải là ước nguyên của 2 hay (x - 1) = (-1, 1, -2, 2)
=> x = (0, 2, -1; 3)
(3) cho bt P= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
a) rút gọn P
b) tìm điều kiện của x để P >0
c) tìm x nguyên để P nhận giá trị nguyên
giúp mk vs ạ
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)