Cho a,b>0 thoả mãn a+b\(\le1\)
CMR: \(\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\ge11\)
Cho \(a,b>0 \)thỏa mãn \(a+b\le1\)
Chứng minh \(\frac{2}{ab}+\frac{1}{a^2+b^2}+4ab\ge11\)
hình như thiếu đề thì phải đó, thử thay a=b=1 vào:
\(\frac{2}{ab}+\frac{1}{a^2+b^2}+4ab=\frac{2}{1.1}+\frac{1}{1^2+1^2}+4.1.1=\frac{13}{2}< 11\)
Cho a, b > 0 thoả mãn \(a+b\le1\)Tìm Min \(A=\frac{1}{a^2+b^2}+\frac{1}{ab}\)
We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
By Cauchy - Schwarz and AM - GM have :
\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)
Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)
cho a,b là các số thực dương thỏa mãn \(a+b\le1\)
CMR \(\frac{1}{a^2+b^2}\)\(+\frac{1}{ab}\)\(+4ab\ge7\)
Có : (a-b)^2>=0
<=>a^2+b^2>=2ab (2)
<=>a^2+b^2+2ab>=4ab
<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2 (3)
Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b (4)
Áp dụng bđt (2) ; (3) và (4) thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab
>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)+ \(\frac{1}{\left(a+b\right)^2}\)
= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM
Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2
Cho a,b,c dương thoả mãn abc=1. CMR
\(\frac{1}{1+a+b^2}+\frac{1}{1+b+c^2}+\frac{1}{1+c+a^2}\le1\)
Cho a;b;c>0 thoả mãn: \(\frac{1}{1+a}+\frac{2}{2+b}+\frac{3}{3+c}\le1\) 1. Tìm min S=abc
đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)
quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).
nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)
mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)
nên x+ y + z \(\ge\)6 (2)
từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.
dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.
vậy Min S = 48.
hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai
cho a,b>0 thỏa mãn a+b=4ab. CMR
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống
Cho a,b là hai số thực dương thỏa mãn: \(a+b\le1\)
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)
\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)
Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng bđt Cauchy ta có
\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)
=> \(Q\ge2012+7=2019\)
Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)
Vậy......
\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)
\(\Rightarrow Q\ge4+2+1+2012=2019\)
Dấu "=" xảy ra khi a=b=1/2
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Bạn @Diệu Linh@ làm nhầm dòng 5 rồi nhé
2, BĐT ban đầu
<=> \(\left(1-\frac{1}{1+a+b}\right)+\left(1-\frac{1}{1+b+c}\right)+\left(1-\frac{1}{1+a+c}\right)\ge2\)
<=> \(\frac{\left(a+b\right)^2}{a+b+\left(a+b\right)^2}+\frac{\left(b+c\right)^2}{b+c+\left(b+c\right)^2}+\frac{\left(c+a\right)^2}{c+a+\left(c+a\right)^2}\ge2\)
Dùng BĐT buniacoxki dạng phân thức ở VT
\(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)+\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)
Mà \(a+b+c\le ab+bc+ac\)
=> \(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=2\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
Cho 2 số thực dương a,b thỏa mãn \(0< a,b\le1\)và \(a+b=4ab\).Tìm minP
\(P=a^2b+ab^2-\frac{a^2+b^2}{6a^2b^2}\)
P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{\left(4ab\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{16a^2b^2}{6a^2b^2}\)+\(\frac{2ab}{6a^2b^2}\)
=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:
P==a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3.\(\sqrt[3]{a^3b^3\frac{8}{3}}\)+\(\frac{1}{3ab}\)=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:
P=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)\(\ge\)2.\(\sqrt{\frac{6}{\sqrt[3]{3}}.ab.\frac{1}{3ab}}\)=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
Vậy MinP=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
\(-\frac{8}{3}\)có phải là số không âm đâu mà áp dụng BĐT Cosi
P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:
P=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3\(\sqrt[3]{a^3.b^3.1}\)-\(\frac{11}{3}\)+\(\frac{1}{3ab}\)=3ab-\(\frac{11}{3}\)+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:
P=3ab-\(\frac{11}{3}\)+\(\frac{1}{3ab}\)=2\(\sqrt{3ab.\frac{1}{3ab}}\)-\(\frac{11}{3}\)=-\(\frac{5}{3}\)
Vậy MinP=-\(\frac{5}{3}\)