Tìm giá trị lớn nhất của biểu thức : C = 5|x - 2|+16 / |x - 2| + 3
AI BIẾT THÌ GIÚP MÌNH VỚI Ạ
Tìm giá trị nhỏ nhất của các biểu thức sau :
C=|x-1|+|x-5|
Tìm giá trị lớn nhất .....
a) C=3-|2x-5| b / D= 1 / 2|x-1|+3
Giúp mình với mình đang cần gấp cảm ơn ạ!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức. Giúp mình lẹ với ạ mình cảm ơn.
P=\(\sqrt{x-2}+3\sqrt{4-x}\)
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
C = - 5 - (x - 1)(x + 2)
Tìm giá trị lớn nhất của biểu thức trên.
Các bạn giúp mình với ạ.Mình cảm ơn!
Ta có: \(C=-5-\left(x+2\right)\left(x-1\right)\)
\(=-5-x^2-x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{11}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Giúp mình với ạ
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức M = 3√x−1 + 4√5 − x với mọi x thỏa mãn 1≤ x ≤ 5
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm giá trị lớn nhất của biểu thức D=-x^2-y^2+xy+2x+2y
giúp mình với ạ . gấp lắm rồi
Tìm giá trị lớn nhất của biểu thức D=-x^2-y^2+xy+2x+2y
giúp mình với ạ . gấp lắm rồi
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)
với x,y >0 , thỏa mãn x+4/y ≤ 2 . tìm giá trị lớn nhất của biểu thức P= 2xy/ x2 + y2 + 3xy .
giúp mình với ạ mấy bạn .