Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VŨ THỊ LAN
Xem chi tiết
VŨ THỊ LAN
16 tháng 9 2017 lúc 18:06

giúp mk vs nha , mk đăng cần rất gấp

Thiên Thần Công Chúa
16 tháng 9 2017 lúc 18:21

mình hk bít vít

Ben 10
16 tháng 9 2017 lúc 19:47

a) A = (2x + 1)/(x² + 2) 
Tìm min 
ta có: A = (2x + 1)/(x² + 2) 
=> 2A = (4x + 2)/(x² + 2) 
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2) 
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2) 
= [ (x + 2)² - (x² + 2) ]/(x² + 2) 
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2) 
= (x + 2)²/(x² + 2) - 1 
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0 
=> (x + 2)²/(x² + 2) ≥ 0 
=> (x + 2)²/(x² + 2) - 1 ≥ -1 
=> 2A ≥ -1 
=> A ≥ -1/2 
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0 
<=> (x + 2)² = 0 
<=> x + 2 = 0 
<=> x = -2 

Tìm max: A = (2x + 1)/(x² + 2) 
= (2x + 2 - 1 + x² - x²)/(x² + 2) 
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2) 
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2) 
= [ (x² + 2) - (x - 1)² ]/(x² + 2) 
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2) 
= 1 - (x - 1)²/(x² + 2) 
Do (x - 1)² ≥ 0 và (x² + 2) > 0 
=> (x - 1)²/(x² + 2) ≥ 0 
=> -(x - 1)²/(x² + 2) ≤ 0 
=> 1 - (x - 1)²/(x² + 2) ≤ 1 
=> A ≤ 1. 
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0 
<=> -(x - 1)² = 0 
<=> (x - 1)² = 0 
<=> x - 1 = 0 
<=> x = 1. 

b) Tìm min: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1) 
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1) 
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1) 
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - 1 
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0 
=> (2x + 2)²/(4x² + 1) ≥ 0 
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1 
=> B ≥ -1 
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0 
<=> (2x + 2)² = 0 
<=> 2x + 2 = 0 
<=> 2x = -2 
<=> x = -1. 

Tìm max: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1) 
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1) 
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1) 
= 4 - (4x - 1)²/(4x² + 1) 
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4 

c) tìm min: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1) 
= [ (x² + 1) + (x + 1)² ]/(x² + 1) 
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1) 
Lập luận tương tự để tìm ra min C = 1 <=> x = -1 

tìm max: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= (3x² - x² + 2x + 3 - 1)/(x² + 1) 
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1) 
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1) 
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1

Lê Việt Anh
Xem chi tiết
hoangthao1219
Xem chi tiết
Đặng Tiến
19 tháng 7 2016 lúc 13:30

\(1.A=x^2+3x-1=-\left(x^2-2.x.\frac{3}{2}+\frac{3}{2}^2-\frac{5}{4}\right)\)

\(A=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0,x\in R\)

do đó \(-\left(x-\frac{3}{2}\right)^2\le0,x\in R\)

nên \(-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4},x\in R\)

Vậy \(Max_A=\frac{5}{4},x=\frac{3}{2}\)

hoangthao1219
19 tháng 7 2016 lúc 13:28

Các bạn hộ mình với nha ^^ Mình sẽ k ngay

Duyên Lê
Xem chi tiết
thururu
21 tháng 4 2018 lúc 19:16

bai dai qua

thururu
21 tháng 4 2018 lúc 19:33

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

thururu
21 tháng 4 2018 lúc 19:38

3/ dễ làm mk làm một cau nha

a   3x-6<0

     3x<6

    3x/3<6/3

  x<2

c  -4x+1>17

    -4x>17-1

  -4x>16

-4x : (-4) < 16 : (-4)

 x < 4   khi nhân , chia với số âm thì đổi chiều 

bai 2 mk khong biet lm

Linh Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

huy tạ
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 10 2021 lúc 20:07

\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Lê Văn Anh Minh
Xem chi tiết
Lưu Quang Trường
14 tháng 4 2021 lúc 11:12

c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)

<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)

<=>x2+2x+x2-2x=4x

<=>2x2-4x=0

<=>2x(x-2)=0

<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)

Vậy pt trên có nghiệm là S={0}

d) 11x-9=5x+3

<=>11x-5x=9+3

<=>6x=12

<=>x=2

Vậy pt trên có nghiệm là S={2}

e) (2x+3)(3x-4) =0

<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}

Lưu Quang Trường
14 tháng 4 2021 lúc 11:05

a) 5x+9 =2x

<=> 5x-2x=9

<=> 3x=9

<=> x=3

Vậy pt trên có nghiệm là S={3}

b) (x+1)(4x-3)=(2x+5)(x+1)

<=> (x+1)(4x-3)-(2x+5)(x+1)=0

<=>(x+1)(2x-8)=0

<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)

Vậy pt trên có tập nghiệm là S={-1;4}

I don
14 tháng 4 2021 lúc 11:21

c) 

<=>

<=>x2+2x+x2-2x=4x

<=>2x2-4x=0

<=>2x(x-2)=0

<=>

Vậy pt trên có nghiệm là S={0}

d) 11x-9=5x+3

<=>11x-5x=9+3

<=>6x=12

<=>x=2

Vậy pt trên có nghiệm là S={2}

e) (2x+3)(3x-4) =0

<=> 

Vậy pt trên có tập nghiệm là S={}