\(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
Tim x
giải các phương trình sau:
\(a,\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
\(b,\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
a, Ta có : \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}+1=-5+5=0\)
=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
=> \(424-x=0\)
=> \(x=424\)
Vậy phương trình có nghiệm là x = 424 .
b, Ta có : \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
=> \(\frac{x+1}{2014}+1+\frac{x+3}{2012}+1=\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}-\frac{x+2015}{2010}-\frac{x+2015}{2009}=0\)
=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
=> \(x+2015=0\)
=> \(x=-2015\)
Vậy phương trình có nghiệm là x = -2015 .
a) \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
<=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}=0\)
<=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{40}=0\)
<=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{40}\right)=0\)
<=> 424 - x = 0
<=> x = 424
Vậy S = {424}
b) \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
<=> x + 2015 = 0
<=> x= -2015
Vậy S = {-2015}
Giải phương trình sau
\(\dfrac{392-x}{32}+\dfrac{390-x}{34}+\dfrac{388-x}{36}+\dfrac{386-x}{38}+\dfrac{384-x}{40}=-5\)
ta có : \(\dfrac{392-x}{32}+\dfrac{390-x}{34}+\dfrac{388-x}{36}+\dfrac{386-x}{38}\)+\(\dfrac{384-x}{40}=-5\)
\(\Leftrightarrow\)\(\dfrac{392-x}{32}+1+\dfrac{390-x}{34}+1+\dfrac{388-x}{36}+1\)+\(\dfrac{384-x}{40}+1=0\)
\(\Leftrightarrow\)\(\dfrac{424-x}{32}+\dfrac{424-x}{34}+\dfrac{424-x}{36}+\dfrac{424-x}{38}+\dfrac{424-x}{40}=0\)\(\Leftrightarrow\left(424-x\right)\left(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}+\dfrac{1}{38}+\dfrac{1}{40}\right)=0\)
\(\Leftrightarrow x=424\)(vì \(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}+\dfrac{1}{38}+\dfrac{1}{40}\ne0\))
Vậy tập nghiệm của phương trình là s=\(\left\{424\right\}\)
Giải các phương trình sau :
v) x+1 / 2009 + x+3 / 2007 = x+5 / 2005 + x+7 / 1993
x) 392- x / 32 + 390 - x / 34 + 388 - x / 36 + 386 - x / 38 + 384 - x / 40 = -
y ) x - 15 / 23 + x - 23 / 15 - 2 =0
a ) y(y^2 - 1) -y^2 - 5y+6 = 0
b ) y( y-1/2 )(2y+5) = 0
m ) y^2 - y -12 = 0
n ) x^2 + 2x + 7 = 0
o ) y^3 - y^2 - 21y +45 = 0
p ) 2y^3 - 5y^2 + 8y - 3 = 0
q ) ( y+3 )^2 + (y+5)^2 = 0
\(\frac{ }{ }\)\(\frac{ }{ }\)
Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !
a) (392 - x)/32 + (390 - x)/34 + (388 - x)/36 = - 3
b) (x - 3)/3 - x = 5 - (x + 1)/4
Các bước giải chi tiết
a) \(\dfrac{392-x}{32}\) + \(\dfrac{390-x}{34}\) + \(\dfrac{388-x}{36}\) = -3
⇔ \(\dfrac{392-x}{32}\)+1+\(\dfrac{390-x}{34}\)+1+\(\dfrac{388-x}{36}\)+1 = 0
⇔\(\dfrac{424-x}{32}\)+\(\dfrac{424-x}{34}\)+\(\dfrac{424-x}{36}\)=0
⇔\(\left(424-x\right)\)\(\left(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}\right)\)=0
⇔\(424-x\) = 0\(\left(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}\ne\forall x\right)\)
⇔\(x=424\)
b) \(\dfrac{x-3}{3}\)- \(x\) = \(5-\dfrac{x+1}{4}\)
⇔\(\dfrac{x-3-3x}{3}\) = 5 + \(\dfrac{-\left(x+1\right)}{4}\)
⇔\(\dfrac{-2x-3}{3}\) = 5 + \(\dfrac{-x-1}{4}\)
⇔\(\dfrac{-2x-3}{3}\) = \(\dfrac{20-x-1}{4}\)
⇔\(\dfrac{-2x-3}{3}\) = \(\dfrac{-x+19}{4}\)
⇔ \(4\left(-2x-3\right)\) = \(3\left(-x+19\right)\)
⇔\(-8x-12\) = \(-3x+57\)
⇔\(-8x\) = \(-3x+69\)
⇔\(-5x=69\)
⇔ \(x=-\dfrac{69}{5}\)
(392-x)/32+(390-x)/34+(388-x)/36=-3
=>392-x)/32 +1 + (390-x)/34 +1 +(388-x)/36 +1=0
=>(424-x)/32+(424-x)/34+(424-x)/36=0
=>424-x=0(vì 1/32+1/34+1/36 khác 0)
=>x=424
Tìm x
a) \(\frac{x+5}{40}+\frac{x+7}{38}+\frac{x+9}{36}=\frac{x+11}{34}+\frac{x+13}{32}-1\)
b) /3x - 2/ - x = 7
c) /2x - 3/ > 5
Giải phương trình
a,\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
b,\(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
c,(2x-5)3-(3x-4)3+(x+1)3=0
d,(x2+3x-4)3+(3x2+7x+4)3=(4x2+10x)3
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
Giair phương trình
a,\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
b,\(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
c,(2x-5)3-(3x-4)3+(x+1)3=0
d,(x2+3x-4)3+(3x2+7x+4)3=(4x2+10x)3
a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)
\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0
\(\Rightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
Vậy x = -65
b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)
\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)
\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)
Vì \(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0
\(\Rightarrow x-99=0\)
\(\Leftrightarrow x=99\)
Vậy x =99
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Tớ đố các cậu tìm được x của các câu trên (với điều kiện x thuộc Z)
a)\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
b)\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
c)\(\frac{2x}{3}-\frac{1}{9}=\frac{59}{36}+\frac{1}{4}\)
d)\(\frac{11}{5}x=\frac{32}{15}-x\)
e)\(\frac{x}{2}=\frac{8}{x}\)
f)\(\frac{x-5}{3}=\frac{34}{15}-\frac{-2}{5}\)
Chúc các cậu hoàn thành tốt bài trên.
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{59}{36}+\frac{1}{4}\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{59+9}{36}\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{68}{36}\)
\(\frac{2x}{3}=\frac{68}{36}+\frac{1}{9}\)
\(\frac{2x}{3}=\frac{68}{36}+\frac{4}{36}\)
\(\frac{2x}{3}=2\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)