tìm n thuộc N biết
x^3y+ 2x^3y+ 3x^3y+....+nx^3y= 20100x^3y
Tìm n thuộc N biết :
a) \(\left(7x^2y^3\right).\left(x^ny^5\right)=7x^3y^8\)
b) \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
c)
Tìm \(n\in N\)biết: \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
\(x^3y^4+2x^3y^4+3x^3y^4+....+nx^3y^4=820x^3y^4\)
\(\Leftrightarrow x^3y^4\left(1+2+3+....+n\right)=820x^3y^4\)
\(\Leftrightarrow1+2+3+....+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640=40.41\)
\(\Rightarrow n=40\)
\(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y\)
\(\Leftrightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)
\(\Leftrightarrow1+2+3+...+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640=40,61\)
\(n=40\)
Tìm \(n\in N\) biết: \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
Đặt \(A=x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4\)
\(A=x^3y^4\left(1+2+3+...+n\right)\)
Lại có:\(A=820x^3y^4\)
\(\Rightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)
\(\Rightarrow1+2+3+...+n=820\)
\(\Rightarrow\dfrac{\left(n+1\right)n}{2}=820\)
\(\Rightarrow\left(n+1\right)n=1640\)
\(\Rightarrow\left(n+1\right)n=41\cdot40\)(vì \(n\in N\) nên ta không xét trường hợp âm)
\(\Rightarrow n=40\)
Vậy n=40
Tìm k thuộc N biết x^3y^5 + 3x^3y^5 + ... + 92k-1)x^3y^5 = 324.9x^3y^5 . Vậy k =
tìm n thuộc N biết:x^3y^4+2x^3y^4+3x^3y^4+.........+ n.x^3y^4=820x^3y^4
Tìm n thuộc N* để phép chia là phép chia hết :
a, (x^2-x^5+8x^6) : 2x^n
b, ( 4x^2y^3-3x^3y^2-2x^3y^3) : (-x^ny^n)
tìm k thuộc N biết x^3y^5 + 3x^3y^5 + 5x^3y^5+.......+(2k-1)x^3y^5=3249x^3y^5
Tìm k thuộc N biết: x^3y^5 + 3x^3y^5 + 5x^3y^5 + ... + (2k - 1)x^3y^5 = 3249x^3y
Tìm x,y biết
x/2=y/3 và 2x-3y=54
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)
\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)
\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)
Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)
mà 2x-3y=54
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)
Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)