Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cho Hỏi
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2023 lúc 8:28

loading...  loading...  

Thanh Ngân
Xem chi tiết
Hoàng Tử Hà
9 tháng 1 2021 lúc 18:44

undefined

Phạm Thùy Dương
Xem chi tiết
Linn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 23:11

a: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình

=>MN//BD

BD//MN

\(MN\subset\left(AMN\right)\)

BD không thuộc mp(AMN)

Do đó: BD//(AMN)

b: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Chọn mp(SBD) có chứa MN

(SBD) giao (SAC)=SO(cmt)

Gọi K là giao điểm của SO với MN

=>K là giao điểm của MN với mp(SAC)

Iron- man
Xem chi tiết
Iron- man
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 3:51

Xuân Huy
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2021 lúc 21:51

MN là đường trung bình tam giác ABD \(\Rightarrow MN||BD\)

Trong mp (SBD), qua P kẻ đường thẳng song song BD lần lượt cắt SB và SD tại E và F

Gọi I là giao điểm AC mà MN

Trong mp (SAC), nối IP kéo dài cắt SC tại Q

Ngũ giác MNFQE là thiết diện của (MNP) và chóp

Hoàng Thị Mai
Xem chi tiết
Hân Lê
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 10 2023 lúc 9:37

S A B C D M N O G K H P Q

a/

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\)

Trong mp (ABCD) gọi O là giao của AC và BD

\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)

\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

b/

Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K

Xét tg SAC có

SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC

=> MN//AC

Mà GM//AC

=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)

\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)

c/

Ta có

\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)

Trong (ABCD) KG cắt AB tại H

\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)

\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)

=> KH là giao tuyến của (GMN) với (ABCD)

Ta có 

\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)

Trong mp(SAC) gọi P là giao của SO với MN

\(P\in MN\Rightarrow P\in\left(GMN\right)\)

Trong mp(SBD) Nối G với P cắt SD tại Q

\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)

\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)

Ta có

\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)

=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK