X^2 + 4y^2 + 4xy - 16
Phân tích thành nhân tử
\(1-8x+16x^2 -y^2\)
\(x^2 -2xy+y^2 -z^2\)
\(x^2 +4xy-16+4y^2\)
\(x^2 -16-4xy+4y^2\)
1: =(16x^2-8x+1)-y^2
=(4x-1)^2-y^2
=(4x-1-y)(4x-1+y)
2: =(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
3: =(x^2+4xy+4y^2)-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
4: =(x^2-4xy+4y^2)-16
=(x-2y)^2-4^2
=(x-2y-4)(x-2y+4)
phân tích thành phân tử :X^2-16-4xy+4Y^2
\(x^2-16-4xy+4y^2\)
\(=\left(x^2-2.x.2y+2y^2\right)-4^2\)
\(=\left(x-2y\right)^2-4^2\)
\(=\left(x-2y-4\right)\left(x-2y+4\right)\)
\(x^2-16+4y^2+4xy\)
Phân tích đa thức thành nhân tử
điền vào chỗ trống cho thích hợp
a, x^2-8x+16=
b, (x-5y) (x+5y)=
c, 4x^4-16=
d, x^2 +4xy+4y^2=
giúp mik với nhá các bạn
a,x2-8x+16=(x-4)2
b,(x-5y)(x+5y)=x2-25y2
c,4x4-16=4(x2-2)(x2+2)
d,x2+4xy+4y2=(x+2y)2
Phân tích đa thức thành nhân tử
x^2- 2x + 2y - xy
x^2 + 4xy -16 + 4y^2
x2 - 2x + 2y - xy = (x2 - 2x) - (xy - 2y) = x(x - 2) - y(x - 2) = (x - 2)(x - y)
x2 + 4xy - 16 + 4y2 = (x2 + 4xy + 4y2) - 16 = (x + 2y)2 - 16 = (x + 2y + 4)(x + 2y - 4)
Phân tích đa thức sau thành nhân tử
a)x^2-4xy+4y^2-4
b)16-x^2+2xy-y^2
a)x^2-4xy+4y^2-4
=(x2-4xy+4y2)-4
=(x-2y)2-4
=(x-2y+2)(x-2y-2)
b)16-x^2+2xy-y^2
=16-(x2-2xy+y2)
=16-(x-y)2
=[4-(x-y)][4+(x-y)]
=(4-x+y)(4+x-y)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
phân tích thành nhân tử:
a. (x^2 + 2x)^2 + 9x^2 + 18x + 20
b. x^2 - 4xy - 2x + 4y^2 + 4y - 35
c. (x+2)(x+4)(x+6)(x+8) = 16
a: \(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
b: \(=\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-35\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)
\(=\left(x-2y-7\right)\left(x-2y+5\right)\)
c: Sửa đề: \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+384+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)