trong mặt phẳng hệ tọa độ Oxy cho hai điểm A(3;-1) ; B(1;1) . Tìm tọa độ điểm E biết điểm E thuộc trục tung và 3 điểm A , B , E thẳng hàng .
Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho hai điểm A(-2,3), B(1,-6). Tọa độ vecto AB là?
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
1.Trong mặt phẳng hệ tọa độ Oxy, viết phương trình đường thẳng Δ qua M(1,2) cắt Ox tại A, cắt Oy tại B sao cho OA+OB =12 2.Cho 3 điểm A(2,0), B(3,4), C(1,1), Viết phương trình đưởng thẳng qua C cách đều hai điểm A, B 3.Trong hệ tọa độ Oxy cho tam giác ABC có BC= x+y=9=0, đường cao B, C lần lượt là: d1: x+2y-13=0, d2:7x=5y-49=0. Tìm tọa độ điểm A
câu 173. Trong mặt phẳng với hệ tọa độ Oxy , cho hai điểm A(2,3) và B(1,4) . Đường thẳng nào cách đều hai điểm A và B?
Lời giải:
Đường trung trực của $AB$ sẽ cách đều 2 điểm $A,B$. Gọi đường này là $d$
$\overrightarrow{n_d}=\overrightarrow{AB}=(-1,1)$
$(d)$ là đường trung trực của $AB$ nên đi qua trung điểm $I(\frac{3}{2}, \frac{7}{2})$ của $AB$
Do đó PTĐT $(d)$ là:
$-1(x-\frac{3}{2})+1(y-\frac{7}{2}=0$
$\Leftrightarrow -x+y-2=0$
Hệ số góc của đường thẳng trong mặt phẳng tọa độ Oxy đi qua hai điểm A (1; 3) và B (3; 4)
Lời giải:
Gọi đt đi qua 2 điểm $A(1,3)$ và $B(3,4)$ có PT là $y=ax+b$
Ta có: \(\left\{\begin{matrix} 3=a.1+b\\ 4=3a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{5}{2}\end{matrix}\right.\)
Vậy PTĐT tìm được là $y=\frac{1}{2}x+\frac{5}{2}$, suy ra hệ số góc cần tìm là $\frac{1}{2}$
Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;1) và B(3;3) tìm tọa độ điểm M thuộc trục hoành để góc AMB nhỏ nhất
trong mặt phẳng hệ tọa độ oxy,cho điểm A(2;5)B(0;-7).tọa độ diểm M của AB là
Lời giải:
Tọa độ trung điểm $M$ của $AB$ là:
\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 3) và B(4; 2). Tìm tọa độ điểm C thuộc trục hoành sao cho C cách đều hai điểm A và B
A. C − 5 3 ; 0 .
B. C 5 3 ; 0 .
C. C − 3 5 ; 0 .
D. C 3 5 ; 0 .
Ta có C ∈ O x nên C(x, 0) và A C → = x − 1 ; − 3 B C → = x − 4 ; − 2 .
Do C A = C B ⇔ C A 2 = C B 2 .
⇔ x − 1 2 + − 3 2 = x − 4 2 + − 2 2 ⇔ x 2 − 2 x + 1 + 9 = x 2 − 8 x + 16 + 4 ⇔ 6 x = 10 ⇔ x = 5 3 ⇒ C 5 3 ; 0
Chọn B.
Trên mặt phẳng tọa độ Oxy cho hai điểm A(1; 2), B(3; 4). Tìm hệ số a của đường thẳng đi qua A và B
Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b
Đường thẳng đi qua hai điểm A và B nên tọa độ A và B nghiệm đúng phương trình.
Ta có: Tại A: 2 = a + b ⇔ b = 2 – a (1)
Tại B: 4 = 3a + b (2)
Thay (1) và (2) ta có: 4 = 3a + 2 – a ⇔ 2a = 2 ⇔ a = 1
Vậy hệ số a của đường thẳng đi qua A và B là 1.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-3;7), B(0;4;-3), C(4;2;5). Tìm tọa độ điểm M trên mặt phẳng (Oxy) sao cho M A → + M B → + M C → có giá trị nhỏ nhất
A. M(-2;-1;0)
B. M(-2;-1;0)
C. M(2;-1;0)
D. M(2;1;0)