Bài 1: Cho tam giác ABC, M là trung điểm của AB, N là trung điểm của AC. Lấy điểm D sao cho N là trung điểm của MD
a) C/m CD=AM, CD //AM
b) C/m tam giác BMC = tam giác DCM
c) C/m MN//BC, MN=1/2BC
cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB,AC , Lấy điểm D sao cho N là trung điểm MD . Chứng minh :
a) CD=AM
b) CD//AM
c)Tam giác MBC= Tam giác CDM
d)MN// BC ; MN=1/2 BC
Cho tam giác ABC, M là trung điểm của AB, N là trung điểm của AC. lấy điểm D sao cho N là trung điểm của MD.Chứng Minh :
a)CD = AM, CD//AM
b)△BMC = △DCM
c) MN//BC, MN= \(\dfrac{1}{2}\)BC
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
cho tam giác ABC . M là trung điểm của AB N là trung điểm của AC .Trên tia MN lấy B sao cho N là trung điểm của MP
C/M
a) MB=CD
b) tam giác BMC= tam giác PCM
c) MN// BC và MN=1/2 BC
vẽ hình và ghi giả thiết kết luận
Cho tam giác ABC cân tại A, kẻ AH vuông với Bc
a) c/m : tam giác AHB =tam giác AHC
b) Gọi M,N lần lượt là trung điểm của AB, AC. Trên tia đối của tia NM lấy điểm D sao cho NM=ND c/m: AM=CD và AB//CD
c) C/m: MN=1/2 Bc
d) Gọi I là giao điểm MC với DH và K là trung điểm của Cd. c/m: B,I,K thẳng hàng
cho tam giác abc , m là trung điểm của ab, n là trung điểm của ac trên tia đối của tia nm lấy điểm d sao cho nm=nd a, cm am=cd b, cm mn =1/2bc
a) Xét ∆AMN và ∆DCN:
MN = ND (gt)
Góc N1 = Góc N2 (hai góc đối đỉnh
AN = NC ( N là trung điểm của AC)
=> ∆AMN = ∆DCN (c-g-c)
=> AM = CD (dpcm)
b)
Ta có: M,N lần lượt là trung điểm của AB, AC
=> MN là đường trung bình của ∆ABC
=> MN = 1/2BC
cho tam giác ABC , M là trung điểm của AB . N là trung điểm của AC . Vẽ điểm D sao cho N là trung điểm của MD . CMR :
a) MD//CD và MB=CD
b) MN//BC và MN=1/2BC
câu b nha
Bài 1. Cho tam giác ABC có AB = AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. a) Chứng minh tam giác ABM = tam giác DCM. b) Chứng minh AB = DC. c) Chứng minh AM = BC. Vẽ hình luôn nha các bạn
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Cho tam giác ABC vuông tại A(AB>AC). M là trung điểm cạnh BC . Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m rang a) tam giác MAB= TAM GIÁC MDC b) AB// CD c) AM= 1/2 BC
Bn tự vẽ hình nha!!!
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
MB = MC (M là trung điểm BC (gt))
\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)
MA = MD (gt)
\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)
b) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\) AB // CD
c) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\) và \(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\)