giải hệ phương trình \(\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{1}{y}+\frac{1}{z}\\z=xy\end{matrix}\right.\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=5\\\frac{2}{xy}-\frac{1}{z^2}-20=5\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x\left(yz+1\right)=\frac{7}{3}z\\y\left(xz+1\right)=8x\\z\left(xy+1\right)=\frac{9}{2}y\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{1}{y}+\frac{6}{z}\\z=xy\end{matrix}\right.\) với x,y,z\(\ne\)0
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)
Giaỉ hệ phương trình \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{matrix}\right.\)
ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\\\frac{2}{xy}=4+\frac{1}{z^2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\\\frac{2}{xy}=4+\frac{1}{z^2}\end{matrix}\right.\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) (1)
Từ pt đầu suy ra:
\(\frac{1}{x}+\frac{1}{y}-2=-\frac{1}{z}\Rightarrow\frac{4}{x}+\frac{4}{y}-8=-\frac{4}{z}\) (2)
Thế (2) vào (1)
\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{x}+\frac{4}{y}-8\)
\(\Leftrightarrow\frac{1}{x^2}-\frac{4}{x}+4+\frac{1}{y^2}-\frac{4}{y}+4=0\)
\(\Leftrightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\)
Bạn tự giải nốt
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y^2+z^3=14\\\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{6}\right)=1\end{matrix}\right.\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)
\(x+y+z=a\)
\(\Leftrightarrow\left(x+y+z\right)^2=a^2\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\)
\(\Leftrightarrow b^2+2\left(xy+yz+zx\right)=a^2\)
\(\Leftrightarrow xy+yz+zx=\frac{a^2-b^2}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{c}\Leftrightarrow xyz=\left(xy+yz+zx\right)c=\frac{a^2-b^2}{2}.c\)
\(x^2+y^2+z^2=b^2\)
\(\Leftrightarrow x^2+\left(y+z\right)^2-2yz=b^2\)
\(\Leftrightarrow x^2+\left(a-x\right)^2-2\left[\frac{\left(a^2-b^2\right)c}{2x}\right]=b^2\)
\(\Leftrightarrow x^2+a^2-2ax+x^2-\frac{\left(a^2-b^2\right)c}{x}=b^2\)
\(\Leftrightarrow2x^3-2ax^2+\left(a^2-b^2\right)x-\left(a^2-b^2\right)c=0\)
\(x,y,z\) là nghiệm của phương trình trên.
~~~~~ Không chắc lắm ạ ~~~~~~Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\2x^2+y=1\end{matrix}\right.\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Thay vào pt đầu và cuối