(P) y=3x^2+2x+1
từ đồ thị P suy ra đths y=\(\left|3x^2-2x-1\right|\)
Cho \(\left(P\right):y=2x^2-3x+1 \)
a ) Vẽ P
b ) Từ đồ thị P suy ra cách vẽ dồ thị hàm số \(y=2x^2-3\left|x\right|+1\)
c) Xác định m để phương trình \(y=2x^2-3\left|x\right|+1\) vô nghiệm , có 2 nghiệm , có 3 nghiệm , có 4 nghiệm
Vào thống kê của "Wall Duong" để xem đồ thị
a)
b) Đỉnh I\(\left(\frac{3}{4};\frac{-1}{8}\right)\)trục đối xứng d: x=\(\frac{3}{4};a=2>0\)
Cho x=0 => y=1; y=1=> x=0,x=\(\frac{1}{2}\)
c) Ta có \(y=f\left(x\right)=2x^2-3\left|x\right|+1\)là hàm số chẵn, vì f(x)=f(-x) nên đồ thị đối xứng qua trục tung
Xét x>=0 thì y=2x2-3x+1 nên đồ thị y=f(x) lấy phần của prabol (P): y=2x2-3x+1 với x>=0 sau đó lấy phần đối xứng đó qua trục tung
Số nghiệm của phương trình 2x2-3|x|+1=m là số giao điểm của đồ thị y=f(x) với đường thẳng y=m
Phương trình vô nghiệm nếu m<\(-\frac{1}{8}\), có 2 nghiệm nếu \(\orbr{\begin{cases}m=\frac{-1}{8}\\m=1\end{cases}}\), có 3 nghiệm nếu m=1, có 4 nghiệm nếu \(-\frac{1}{8}< m< 1\)
vẽ đồ thị : a) y = 1 - 2x b) y = 3x c) \(\left|1-2x\right|+2\left(x+3\right)\)
Vẽ đồ thị của các hàm số \(y=3x+1\) và \(y=-2x^2\). Hãy cho biết:
a) Hàm số \(y=3x+1\) đồng biến hay nghịch biến trên R.
b) Hàm số \(y=-2x^2\) đồng biến hay nghịch biến trên mỗi khoảng: \(\left(-\infty;0\right)\) và \(\left(0;+\infty\right)\)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
cho hàm số y=2x+m
xác định m để đths cắt đồ thị hs y=3x+2 trong góc phần 4 thứ tư
không biết lm nên ké vs
Bài 1 a) Khảo sát và vẽ đồ thị hàm số y=x³-2x²+x (C) b) từ đồ thị (C) suy ra đồ thị các hàm số sau: y=|x³-2x²+x|, y=|x|³ -2x²+|x| Bài 2: Khảo sát và vẽ đồ thị hàm số y=x⁴-2x²-3 (C). Từ đồ thị (C) suy ra đồ thị hàm số y=|y=x⁴-2x²-3|
Đk: \(x\ge\frac{2}{3}\)
Ta có: \(x^2+1^2\ge2x=\left(2x-1\right)+1=\left(\sqrt{2x-1}\right)^2+1^2\ge2\sqrt{2x-1}\left(1\right)\)
Lại có: \(\left(\sqrt{x}+\sqrt{3x-2}\right)^2\le2\left(x+3x-2\right)=2\left(4x-2\right)=4\left(2x-1\right)\)
suy ra: \(\sqrt{x}+\sqrt{3x-2}\le2\sqrt{2x-1}\left(2\right)\)
Từ (1);(2) suy ra \(x^2+1\ge\sqrt{x}+\sqrt{3x-2}\)
Để dấu"=" xảy ra theo đề bài thì x=1
Cho hàm số \(y=-2x^2+\left(m-3\right)x+5-m\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số với m=0
b) Dựa vào đồ thị, Tìm a để phương trình \(2x^2+3x+a=0\) có 2 nghiệm phân biệt
c) Dựa vào đồ thị, vẽ đồ thị hàm số \(y=\left|2x^2+3x-5\right|\)
d) Vẽ đồ thị hàm số \(y=-2x^2-3\left|x\right|+5\)
Từ đó tìm a để \(2x^2+3\left|x\right|+a=0\) có 4 nghiệm phân biệt
e) Tìm m để hàm số đồng biến trên khoảng (amvc;3)
Rút gọn các biểu thức:
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
Rút gọn các biểu thức :
a, \(\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)\)
b, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(c,\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)
=\(9x^2+54\)=\(9\left(x^2+6\right)\)
b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
=\(x^3-16x^2+25x\)
c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)