Tìm GTNN của \(\frac{x^2+2x+6}{x^2-2x+1}\)
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
tìm GTNN của phân thức \(\frac{3x^2+8x+6}{x^2+2x+1}\)
Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)
\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)
Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.
Tìm GTNN của biểu thức: \(\frac{3x^2-8x+6}{x^2-2x+1}\)
Ta có:
\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)
\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)
\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)
Đê pt theo nghiệm x có nghiệm thì
\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)
\(\Leftrightarrow A-2\ge0\)
\(\Leftrightarrow A\ge2\)
Vậy GTNN là 2 khi x = 2
bn giải cách lớp 8 đi
Tìm GTNN của :
A=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Viết A dưới dạng biểu thức không âm :
A=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}=2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A=2 khi và chỉ khi x=2
Đặt x-1=y thì x=y+1.ta có :
A=\(\frac{3\left(y+1\right)^2-8\left(y+1\right)+6}{y^2}=\frac{3y^2-2y+1}{y^2}=3-\frac{2}{y}+\frac{1}{y^2}\)
Lại đặt \(\frac{1}{y}=z\) thì
A=3-2z+z2=(z-1)2+2\(\ge\) 2
Vậy GTNN của A=2 \(\Leftrightarrow\) z=1\(\Leftrightarrow\) y=1\(\frac{1}{x-1}=1\Leftrightarrow x=2\)
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
TÌm GTNN của
E=\(\frac{3x^2-2x+3}{x^2+1}\)
G=\(\frac{x^6+512}{x^2+8}\)
Tìm GTNN của A = \(\frac{3x^2-8x+6}{x^2-2x+1}\)(\(x\ne1\))
A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)
dấu = xảy ra x=2
chúc ban hk tốt
\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)
\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)
Dấu ''='' xảy ra khi GTNN của A=2