Tính giá trị của biểu thức \(A=\frac{x^5-5x^3-4x+2}{x^4+x^2-14x-4}\) biết \(x^2-2x-1=0\)
Tính giá trị của biểu thức
A= \(\dfrac{x^5-5x^3-4x+2}{x^4+x^2-14x-4}\) biết x2 - 2x - 1 = 0
\(=\dfrac{x^5+2x^4-x^3-2x^4-4x^3+2x^2-2x^2-4x+2}{x^4-2x^3-x^2+2x^3-4x^2-2x+6x^2-12x-6+2}\)
\(=\dfrac{\left(x^2+2x-1\right)\left(x^3-2x^2-2\right)}{x^2\left(x^2-2x-1\right)+2x\left(x^2-2x-1\right)+6\left(x^2-2x-1\right)+2}\)
\(=\dfrac{\left(x^2+2x-1\right)\left(x^3-2x^2-2\right)}{2}\)
\(=\dfrac{x^5-2x^4-x^3+2x^4-4x^3-2x^2+2x^2-4x-2+4}{2}\)
\(=\dfrac{x^3\left(x^2-2x-1\right)+2x^2\left(x^2-2x-1\right)+2\left(x^2-2x-1\right)+4}{2}\)
=4/2=2
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) -2x(x-5)+3(x-1)+2x^2-13x
b)-x^2(2x^2 - x - 3)+x(x^2+2x^3+3)-3x(x^2+x)+x^3-3x
Câu3: Tìm x, biết
a) 5x^2-5x(x-5)=10x-35.
b) 4x(x - 5) -7x(x - 4) + 3x^2 = 4 - x
Câu4: Tính giá trị biểu thức sau:
a) A=2x(3x^2-2x)+3x^2(1-2x)+x^2-7 với x = -2
b) B=x^5-15x^4+16x^3-29x^2+13x với x =14
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Câu 3:
a) \(5x^2-5x\left(x-5\right)=10x-35\)
\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)
\(\Leftrightarrow25x=10x+35\)
\(\Leftrightarrow15x=35\)
\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)
Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)
b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)
\(\Leftrightarrow8x=4-x\)
\(\Leftrightarrow9x=4\)
\(x=\dfrac{4}{9}\)
Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)
1.Tìm giá trị của x sao cho hai biểu thức có giá trị bằng nhau: 0,35x+3/4x và 4+x/10+x-39
2.Tìm giá trị của x sao cho biểu thức sau có giá trị bằng 6: (1+x)^3+(1-x)^3-6x(x+1)
3. Giải các phương trình sau:
a,,(7x-2x)(2x-1)(x+3)=0
b,(4x-1)(x-3)-(x-3)(5x+2)=0
c, (x+4)(5x+9)-x^2+16=0
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
Lê Nhật Hằng cảm ơn bạn nha
Cho a=x^2+x+1.Tính theo a giá trị của biểu thức: A=x^4+2x^3+5x^2+4x+4
Câu1: Tính giá trị của biểu thức A với x=999
A= x^6-x^5(x-1)-x^4(x-1)+x^3(x-1)+x^2(x+1)-x(x-1)+1
Câu 2: Rút gọn biểu thức
a) A=(x+5)(2x-3)-2x(x+3)-(x-15)
b) B=2(x-5)(x+1)+(x+3)-(x-15). Tính giá trị của biểu thức B với x=-3/4
c) C= 5x^2(3x-2)-(4x+7)(6x^2-x)-(7x-9x^3)
cho hai đa thức M(x)=3x^4-2x^+5x^2-4x+1
N(x)=-3x^4+2x^3-3x^2+7x+5.
a)tính P(x)=M(X)+N(x)
b)tính giá trị cua biểu của P(x)tại x=-2
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6
cho biểu thức A= \(\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\) (với x \(\ne\)0; x\(\ne\)-2; x\(\ne\)2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A khi x=4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Câu 1 : Cho 2 biểu thức :
P=\(\frac{2x-4}{x^2-4x+4}\)-\(\frac{1}{x-2}\)
Q= \(\frac{3x+15}{x^2-9}+\frac{1}{x+3}-\frac{2}{x-3}\)
a,Tính giá trị của biểu thức P và biểu thức Q tại x=2
b, Tìm x để P< 0
c, Với giá trị nào của x thì Q có giá trị nguyên
Câu 2 : Tính
a, \(\frac{20x^3}{11y^2}.\frac{55y^5}{15x}\)
b,\(\frac{5x-2}{2xy}-\frac{7x-4}{2xy}\)
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)