Cho tam giác ABC cân tại A. Vẽ BD vuông góc AC tại D. Vẽ CE vuông góc AB tại E. H là giao điểm của BD
và CE. Chứng minh:
a) BD=EC b) góc EAH = góc DAH c) AH vuông góc BC
cho tam giác ABC cân tại A , vẽ BD vuông góc vs AC tại D, CE vuông góc vs AB tại E. gọi H là giao điểm của BD và CE. CM
a)BD=CE
b)AH vuông góc vs BC
c)góc EAH= góc DAH
a) Xét 2 tam giác vuông \(\Delta EBC\)và \(\Delta DCB\)có:
\(BC:\)cạnh chung
\(\widehat{EBC}=\widehat{DCB}\)
suy ra: \(\Delta EBC=\Delta DCB\) (ch_gn)
\(\Rightarrow\)\(BD=EC\) (cạnh tương ứng)
b) \(\Delta ABC\)có các đường cao \(BD,EC\)cắt nhau tại \(H\)
\(\Rightarrow\)\(H\)là trực tâm của \(\Delta ABC\)
\(\Rightarrow\)\(AH\)là đường cao của \(\Delta ABC\)
\(\Rightarrow\)\(AH\perp BC\)
c) \(\Delta ABC\)cân tại A có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\)\(\widehat{EAH}=\widehat{DAH}\) (đpcm)
Cho tam giác cân tại A( góc A<90 độ), vẽ BD vuông góc AC, CE vuông góc AB. Gọi H là giao điểm của BD và CE. Chứng minh:
a)AB//HK. b)Tam giác AKI cân.
c)AH là đường trung trực của ED. d)Trên tia đối của tia DB lấy điểm K sao cho DK=DB. Chứng minh góc ECB=DKC.
nhầm tiếp, phải là;
a) Tam giác ABD=ACE.
xin lỗi lần 2
a)Xét △ABD và △ACE:
góc ADB = góc AEC = 90o (BD vuông góc AC, CE vuông góc AB)
AB = AC (ΔABC cân tại A)
A là góc chung
Vậy △ABD = △ACE (ch.gn)
b) Ta có: △ABD = △ACE (cmt)
=>AD = AE (các cặp cạnh tương ứng)
=>△AED cân tại A
c) cho AF nằm trên AH sao cho AF\(\perp\)ED tại F
Xét △AFE và △AFD
góc AFE = góc AFD = 90o (AF\(\perp\)ED tại F)
AE = AD (cmt)
AF là cạnh chung
Vậy △AFE = △AFD (ch.cgv)
=>FE = FD (các cặp cạnh tương ứng)
=> F là trung điểm của ED
Vì AF nằm trên AH
=> AH đi qua trung điểm của AE và AH\(\perp\)ED
=>AH là đường trung trực của ED
d)Xét ΔECB và\(\Delta\)DBC
góc CEB = góc BDC = 90o ( BD vuông góc AC, CE vuông góc AB)
CB là cạnh chung
góc EBC = góc DCB (ΔABC cân tại A)
vậy ΔECB = \(\Delta\)DBC (ch.gn)
=> góc ECB = góc DBC (các cặp góc tương ứng)
Xét ΔCDB và ΔCDK
DB = DK (gt)
góc CDB = góc CDK = 90o (gt)
DC là cạnh chung
Vậy ΔCDB = ΔCDK (c.g.c)
=> góc CBD = góc CKD (các cặp góc tương ứng)
Mà góc CBD = góc ECB (cmt)
=> góc ECB=DKC
Cho tam giác ABC cân tại A (góc A < 90 độ ). Vẽ BD vuông góc AC tại D ; CE vuông góc AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh: a) tam giác BEC= tam giác CDB .
b) AD =AE .
c) AI là tia phân giác của góc BAC .
d) DE / /BC .
e) Gọi M là trung điểm của cạnh BC . Chứng minh ba điểm A ,I ,M thẳng hàng.
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
cho tam giác ABC nhọn có AB = AC, vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi M là giao điểm của BD và CE . Chứng minh:
a)tam giác DBA = tam giác ECA
b)tam giác EBC= tam giác DCB
c)tam giác EAM= tam giác DAM
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=BD
=>ΔEBC=ΔDCB
c: Xét ΔEAM vuông tại E và ΔDAM vuông tại D có
AM chung
AE=AD
=>ΔEAM=ΔDAM
Cho tam giác ABC cân tại A. Vẽ BD vuông với AC tại D, CE vuông với AB tại E . Gọi H là giao điểm của BD và CE. Chứng minh rằng: a) BD = CE b) IH vuông góc BC .giúp mik với ạ 😩🥺❤️❤️
Xét tam giác vuông AEC và tam giác vuông ADB,có:
Góc A: chung
AB=AC ( ABC cân )
Vậy tam giác vuông AEC và tam giác vuông ADB ( ch.gn )
=> BD=CE ( 2 cạnh tương ứng )
b. bạn xem lại đề nhé
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
Bài 4. Cho tam giác ABC cân tại A (Â < 90o). Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a)Chứng minh tam giác ABD = tâm giác ACE để suy ra CE = BD
b)Chứng minh AH là phân giác của góc BAC.
c)Chứng minh DE // BC
d)Trên tia CE lấy điểm M sao cho E là trung điểm của HM. Trên tia BD lấy điểm N sao cho D là trung điểm của HN. Chứng minh AM = AH và tam giác AMN cân.
e)Tam giác ABC cho trước phải có điều kiện gì để tam giác AMN là tam giác đều.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra; BD=CE
b: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
Suy ra: \(\widehat{EAH}=\widehat{DAH}\)
hay AH là tia phân giác của góc BAC
c: Xét ΔABC cso AE/AB=AD/AC
nên DE//BC
Cho tam giác ABC cân tại A ( AB > BC ) . Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E
a) Chứng minh rằng : tam giác DAB = tam giác EAC và tam giác ADE cân
b) Gọi H là giao điểm của BD và CE . Chứng minh rằng : AH là tia phân giác của góc BAC
c) Chứng minh rằng : AH > CH
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC