a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=BD
=>ΔEBC=ΔDCB
c: Xét ΔEAM vuông tại E và ΔDAM vuông tại D có
AM chung
AE=AD
=>ΔEAM=ΔDAM
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=BD
=>ΔEBC=ΔDCB
c: Xét ΔEAM vuông tại E và ΔDAM vuông tại D có
AM chung
AE=AD
=>ΔEAM=ΔDAM
Bài 1. Cho tam giác ABC nhọn có AB = AC , vẽ BD AC giao điểm của BD và CE . Chứng minh: tại D , CE AB tại E . Gọi M là a) tam giác DBA ECA; b) EBC DCB ; c) EAM DAM
cho tam giác abc cân tại a, a<90
BD vuông góc với AC
CE vuông góc với AB
Chứng minh rằng
Tam giác DBA = Tam giác ECA
Tam giác EBC = Tam giác DCB
Tam giác EAM = Tam giác DAM
Cho tam giác ABC cân tại A có góc A nhọn. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Gọi K là giao điểm của BD và CE. Chứng minh:
a) Tam giác BCE= Tam giác CBD
b) Tam giác BEK = Tam giác CDK
c) AK là phân giác của góc BAC
d) Ba điểm A, K, I thẳng hàng (với I là trung điểm của BC)
Cho tam giác ABC có AB bằng ac kẻ BD vuông góc với AC tại D kẻ CE vuông góc với AB tại E Gọi I là giao điểm của BD và CE a) tam giác abd = tam giác ace b) tam giác BEI = tam giácCDI
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Cho tam giác nhọn ABC , kẻ BD vuông góc với AC tại D , CE vuông góc với AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh rằng:
a; tam giác ABD = tam giác ACE
b ;EI=DI
c; AI vuông góc với BC
Cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi O là giao điểm của BD và CE.
a) Cm: BD=CE
b) Cm: tam giác OEB= tam giác ODC
c) Cm: OA là tia phân giác của góc BAC
cho tam giác ABC cân tại A.Trên cạnh BC lấy D,E (D nằm giữa B và E sao cho BD=CE).Vẽ DM vuông góc với AB tại M, EN vuông góc với AC tại N. gọi K là giao điểm của MD và NE. Chứng minh rằng: a) tam giác MBD = tam giác NCE. b) tam giác MAK = tam giác NAK
Cho tam giác ABC cân tại A (góc A < 90 độ ). Vẽ BD vuông góc AC tại D ; CE vuông góc AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh: a) tam giác BEC= tam giác CDB .
b) AD =AE .
c) AI là tia phân giác của góc BAC .
d) DE / /BC .
e) Gọi M là trung điểm của cạnh BC . Chứng minh ba điểm A ,I ,M thẳng hàng.