Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
4 tháng 5 2017 lúc 10:27

a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\)\(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)

Bùi Thị Vân
4 tháng 5 2017 lúc 10:56

b) Đkxđ: \(x\ne-1\)
\(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)\(\Leftrightarrow\left(m-x\right)x+3=\left(2m-1\right)\left(x+1\right)\) \(\Leftrightarrow-x^2+x\left(1-m\right)+4-2m=0\) (*)
Xét (*) có nghiệm \(x=-1\) .
Khi đó: \(-\left(-1\right)^2+\left(-1\right)\left(1-m\right)+4-2m=0\)\(\Leftrightarrow m=2\)
Xét \(m=2\) thay vào phương trình ta có:
\(\dfrac{\left(2-x\right)x+3}{x+1}=2.2-1\Leftrightarrow\left\{{}\begin{matrix}-x^2+2x+3=0\\x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x=3\)
Vậy với m = 2 thì phương trình có nghiệm x = 3.
Xét \(m\ne2\)
\(\Delta=\left(1-m\right)^2-4.\left(-1\right).\left(4-2m\right)=\)\(m^2-10m+17\)
Nếu \(\Delta=0\Leftrightarrow m^2-10m+17=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=5+2\sqrt{2}\\m=5-2\sqrt{2}\end{matrix}\right.\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\left(\ne-1\right)\) nếu \(m=5+2\sqrt{2}\).
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\left(\ne-1\right)\)  nếu \(m=5-2\sqrt{2}\).
Nếu \(\Delta>0\Leftrightarrow m^2-10m+17>0\)\(\Leftrightarrow\left(m-5+2\sqrt{2}\right)\left(m-5-2\sqrt{2}>0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m>5+2\sqrt{2}\\m< 5-2\sqrt{2}\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt là:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\)
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Biện luận:
Nếu \(\Delta< 0\Leftrightarrow5-2\sqrt{2}< m< 5+2\sqrt{2}\) thì phương trình vô nghiệm.
Biện luận:
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\)
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\)
Với  m = 2 thì phương trình có duy nhất nghiệm là: x = 3
Với \(m>5+2\sqrt{2}\) hoặc \(m< 5-2\sqrt{2}\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\);
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Với \(5-2\sqrt{2}< m< 5+2\sqrt{2}\)  và \(m\ne2\) thì phương trình vô nghiệm.

Bùi Thị Vân
4 tháng 5 2017 lúc 14:38

c) Đkxđ: \(x\ne1\)
\(\dfrac{\left(2m+1\right)x-m}{x-1}=x+m\)
\(\Rightarrow\left(2m+1\right)x-m=\left(x+m\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-x\left(2+m\right)=0\)
\(\Leftrightarrow x\left[x-\left(2+m\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2+m\end{matrix}\right.\)
Phương trình luôn có một \(x=0\).
Để \(x=2+m\) là một nghiệm của phương trình thì:
\(2+m\ne1\Leftrightarrow m\ne-1\).
Biện luận:
\(m=-1\) phương trình có một nghiệm x = 0.
\(m\ne-1\) phương trình có hai nghiệm: \(x=0\) và \(x=2+m\).

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 20:19

\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)

Với \(m\ne2;m\ne3\)

\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)

Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)

Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)

Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
14 tháng 4 2017 lúc 14:18

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

Bùi Thị Vân
3 tháng 5 2017 lúc 14:10

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

Bùi Thị Vân
3 tháng 5 2017 lúc 14:42

c) \(mx^2+\left(2m-1\right)x+m-2=0\)
- Với m = 0 phương trình trở thành:
\(0.x^2+\left(2.0-1\right)x+0-2=0\)\(\Leftrightarrow-x-2=0\)\(\Leftrightarrow x=-2\)
- Xét \(m\ne0\)
\(\Delta=\left(2m-1\right)^2-4m.\left(m-2\right)=4m+1\)
Nếu \(4m+1>0\Leftrightarrow m>\dfrac{-1}{4}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\);
\(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
Nếu \(4m+1=0\Leftrightarrow m=\dfrac{-1}{4}\) phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-1\right)}{2m}=\dfrac{-\left(2.\dfrac{-1}{4}-1\right)}{2.\dfrac{-1}{4}}=-3\)
Nếu \(4m+1< 0\Leftrightarrow m< \dfrac{-1}{4}\) phương trình vô nghiệm.
Biện luận:
\(m=0\) phương trình có một nghiệm là x = -2.
\(m\ge\dfrac{-1}{4}\)\(m\ne0\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\); \(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
\(m\le\dfrac{-1}{4}\) phương trình có nghiệm kép:\(x_1=x_2=3\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
5 tháng 5 2017 lúc 17:06

a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
​Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
​Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
​Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
​Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
​Biện luận:
​Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
​Với m = -3 hệ vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).

Bùi Thị Vân
5 tháng 5 2017 lúc 17:16

b​) Đkxđ: \(x\ne\dfrac{1}{2}\).
\(pt\Leftrightarrow\left(m+3\right)x=\left(2x-1\right)\left(3m+2\right)\)
\(\Leftrightarrow\left(5m+1\right)x=3m+2\). (*)
​Xét \(5m+1=0\Leftrightarrow m=\dfrac{-1}{5}\) thay vào phương trình ta có:
\(0x=\dfrac{7}{5}\) phương trình vô nghiệm.
​Xét \(5m+1\ne0\Leftrightarrow m\ne\dfrac{-1}{5}\).
​Khi đó (*) có nghiệm là: \(x=\dfrac{3m+2}{5m+1}\).
​Để \(x=\dfrac{3m+2}{5m+1}\) là nghiệm của phương trình thì:
\(x=\dfrac{3m+2}{5m+1}\ne\dfrac{1}{2}\)\(\Leftrightarrow2\left(3m+2\right)\ne5m+1\)\(\Leftrightarrow m\ne-3\).
​Biện luận:
​Với \(m=-\dfrac{1}{5}\) hoặc \(m=-3\) phương trình vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne-\dfrac{1}{5}\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{3m+2}{5m+1}\).

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
5 tháng 5 2017 lúc 14:23

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

Bùi Thị Vân
5 tháng 5 2017 lúc 14:27

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

Bùi Thị Vân
5 tháng 5 2017 lúc 14:45

c) Th1: \(m+1=0\)\(\Leftrightarrow m=-1\).
Thay \(m=-1\) vào phương trình ta được:
\(-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\).
Th2: \(m+1\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m+2\right)=-24m+1\).
- \(\Delta=0\)\(\Leftrightarrow-24m+1=0\)\(\Leftrightarrow m=\dfrac{1}{24}\). Khi đó phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-3\right)}{2\left(m+1\right)}=-\dfrac{2.\dfrac{1}{24}-3}{2.\left(\dfrac{1}{24}+1\right)}=-\dfrac{7}{5}\).
- \(\Delta< 0\)\(\Leftrightarrow-24m+1< 0\)\(\Leftrightarrow m>\dfrac{1}{24}\). Khi đó phương trình vô nghiệm.
- \(\Delta>0\Leftrightarrow m< \dfrac{1}{24}\). Khi đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\)
\(x_2=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
​Biện luận:
​- Với \(m=-1\) phương trình có duy nhất nghiệm \(x=\dfrac{1}{5}\).
​- Với \(m=\dfrac{1}{24}\) phương trình có nghiệm kép: \(x_1=x_2=-\dfrac{7}{5}\).
​- Với \(m>\dfrac{1}{24}\) phương trình vô nghiệm.
​- Với \(m< \dfrac{1}{24}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\); \(x_1=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).

Sách Giáo Khoa
Xem chi tiết
Hiiiii~
2 tháng 4 2017 lúc 21:53

a) ⇔ (m – 3)x = 2m + 1.

Nếu m ≠ 3 phương trình có nghiệm duy nhất x = . Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = . Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình. Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

Nếu m ≠ 1 có nghiệm duy nhất x = 1. Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


nguyen le duy hung
Xem chi tiết
luyen hong dung
15 tháng 6 2018 lúc 16:05

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................