Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lưu gia phong
Xem chi tiết
Tô Hoài Dung
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 21:00

\(\Leftrightarrow\left(m+1\right)^2-4m>0\)

\(\Leftrightarrow\left(m-1\right)^2>0\)

hay \(m\notin\left\{0;1\right\}\)

Nguyễn Huy Tú
23 tháng 1 2022 lúc 21:02

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-2\right)^2\)

Để pt có 2 nghiệm phân biệt 

\(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)^2>0\\m-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m\ne2\end{matrix}\right.\)

Lê Minh Thuận
Xem chi tiết

TH1: m=1

Phương trình sẽ trở thành:

\(\left(1-1\right)x^2+2\left(1-1\right)x-1=0\)

=>-1=0(vô lý)

=>Loại

TH2: m<>1

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot\left(m-1\right)\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\left(m-1\right)\)

\(=4m^2-8m+4+4m^2-4m\)

\(=8m^2-12m+4\)

\(=4\left(2m^2-3m+1\right)\)

\(=4\left(2m-1\right)\left(m-1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(4\left(2m-1\right)\left(m-1\right)>0\)

=>(2m-1)(m-1)>0

=>\(\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-1\right)}{m-1}=-2\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{m}{m-1}\end{matrix}\right.\)

Để phương trình có hai nghiệm phân biệt cùng âm thì \(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2< 0\\x_1\cdot x_2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\-2=0\left(đúng\right)\\-\dfrac{m}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\)

=>\(0< m< \dfrac{1}{2}\)

Phạm Quỳnh Anh 9a13-
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 19:00

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
level max
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 16:28

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

nguyen do bich tra
Xem chi tiết
Phạm Tuân
Xem chi tiết
Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt