Tìm x thuộc Z thỏa
(x+2)(y-1)= 7
b)3x2 +5y2= 345
tìm x , y thỏa mãn : x2+5y2=345
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Tìm x,y thuộc Z thỏa:
3x2 + 5y2=345
3x2+5y2=345
=> 3x2+5y2=300+45
=> 3x2+5y2=3.100+5.9
=> 3x2+5y2=3.102+5.32
=> x=10; y=3.
Bài 2
Tìm x, y thuộc Z thỏa mãn: \(3x^2+5y^2=345\)
Cho x,y thỏa mãn 2x - 3y = 7. Chứng minh rằng 3x2 + 5y2 \(\ge\) \(\dfrac{735}{47}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\frac{47}{15}(3x^2+5y^2)=[(\sqrt{3}x)^2+(-\sqrt{5}y)^2][(\frac{2}{\sqrt{3}})^2+(\frac{3}{\sqrt{5}})^2]\geq (2x-3y)^2$
$\Leftrightarrow \frac{47}{15}(3x^2+5y^2)\geq 49$
$\Rightarrow 3x^2+5y^2\geq \frac{735}{47}$
Ta có đpcm.
tìm cặp số nguyên x,y thỏa mãn ( x - 1)2 + 5y2 = 6
Answer:
\(2+5y^2=6\)
\(5y^2=6-2\)
\(5y^2=4\)
\(5y^2=2^2\)
\(\Rightarrow5y=2\)
\(y=2\div5\)
\(y=\dfrac{2}{5}\)
Vậy \(y=\dfrac{2}{5}\)
tìm cặp số nguyên x,y thỏa mãn ( x - 1)2 + 5y2 = 6
`(x - 1)^2 + 5y^2 = 6`
`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$
`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\
`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$
(x-1)2≥0 => 5y2≤6 => y2≤6/5
Mà y2 là số chính phương => y2 = 0 hoặc y2 = 1
TH1: y2= 0
=> (x-1)2 = 6 (vô lý)
TH2: y2 = 1 => y = -1 hoặc 1
=> 5y2=5
=> (x-1)2=6-5=1
=> x-1 = 1 hoặc x-1 = -1
=> x=2 hoặc x=0
Vậy các cặp số tm là (0,1); (0,-1); (2,1); (2,-1)
Tìm x ; y thuộc z .Biết :
a.(x+2) * (y-5) = -7
b.(x-1) * (xy-3) = -5
a. (x + 2) * (y - 5) = -7
<=> (y - 5) = -\(\dfrac{7}{x+2}\)
x ∈ Z => 7 chia hết cho (x + 2)
=> x = 5
<=> y -5 = -1
y = -1 + 5
y = 4
Vậy x = 5 và y = 4
b. (x-1) * (xy-3) = -5
<=> (xy-3) = -\(\dfrac{5}{x-1}\)
x ∈ Z => 5 chia hết cho x-1
=> x =6 ; -4; 2
TH1 : x = 6 => 6y-3
<=> 6y - 3 = -\(\dfrac{5}{6-1}\)
=> 6y - 3 = -1
6y = -1+3
6y = 2
y = 6:2
y = 3
TH2 : x = -4
<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)
<=> -4y - 3 = 1
-4y = 1 + 3
-4y = 4
y = 4 : -4
y = -1
TH3 : x = 2
<=> 2y - 3 = -\(\dfrac{5}{2-1}\)
<=> 2y - 3 = -5
2y = -5 + 3
2y = -2
y = -2 : 2
y = -1
Vậy x =2 và y = -1 hoặc x = -4 và y = -1
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6