Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Tú
Xem chi tiết
Nott mee
Xem chi tiết
Trúc Giang
24 tháng 6 2021 lúc 19:45

a) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)

Để A nguyên thì 4 ⋮ √x - 2

\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6;-2\right\}\)

Mà x \(\sqrt{x}\ge0\)

=> x thuộc {9; 1; 16; 0; 36}

b) 

Trần Anh Tuấn
Xem chi tiết
Bảo Ngọc Hoàng
Xem chi tiết
Nguyễn Minh Đăng
28 tháng 10 2020 lúc 12:56

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b) Ta có:

\(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{3x-8\sqrt{x}+27}{9-x}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)+2\sqrt{x}\cdot\left(\sqrt{x}-3\right)-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{x+5\sqrt{x}+6+2x-6\sqrt{x}-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7\sqrt{x}-21}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{7\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7}{\sqrt{x}+3}\)

c) Nếu x không là số chính phương => P vô tỉ (loại)

=> x là số chính phương khi đó để P nguyên thì:

\(\left(\sqrt{x}+3\right)\inƯ\left(7\right)\) , mà \(\sqrt{x}+3\ge3\left(\forall x\ge0\right)\)

\(\Rightarrow\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

Vậy x = 16 thì P nguyên

Khách vãng lai đã xóa
Trần Anh
Xem chi tiết
Đinh Đức Hùng
28 tháng 9 2017 lúc 20:57

ĐK : \(x>1\)

\(B=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x-1}}{x-1-x}+x\)

\(=x-2\sqrt{x-1}\)

Ta có : \(B=x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1=\sqrt{\left(x-1\right)^2}-2\sqrt{x-1}+1\)

\(=\left(\sqrt{x-1}-1\right)^2\ge0\)

Để B nhận gt nguyên dương \(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2\ne0\Leftrightarrow\sqrt{x-1}\ne1\Rightarrow x\ne2\)

Vậy \(x>1;x\ne2;x\in Z^+\) thì B nhận GT nguyên dương

Thắng  Hoàng
28 tháng 9 2017 lúc 20:39

Thánh chịu thôi@@@@@?

mai tiến dũng
28 tháng 9 2017 lúc 20:43

124154

Nguyễn Bá Hải
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 8 2021 lúc 9:25

a) ĐK : x >= 0 ; x khác 4

\(\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)

Để biểu thức có gtri nguyên thì \(\frac{5}{\sqrt{x}-2}\inℤ\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)( bạn tự xét tiếp )

b) ĐK : x >= 0

\(\frac{2\sqrt{x}-1}{\sqrt{x}+3}=\frac{2\sqrt{x}+6-7}{\sqrt{x}+3}=2-\frac{7}{\sqrt{x}+3}\)

Để biểu thức có gtri nguyên thì \(\frac{7}{\sqrt{x}+3}\inℤ\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)( tương tự )

Khách vãng lai đã xóa
Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

Park Chanyeol
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:49

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.

Tran Thi Hien Nhi
Xem chi tiết
Diệp An Nhiên
Xem chi tiết
Diệp An Nhiên
2 tháng 9 2019 lúc 14:11

AI GIẢI HỘ MÌNH K CHO Ạ!!!

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:34

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:40

2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)

b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)

Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)

c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)

P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)

\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)

d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)

\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Lập bảng:

\(2\sqrt{x}-3\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(\sqrt{x}\)\(2\)\(1\)\(3\)\(0\)\(6\)\(-3\)
\(x\)\(4\)\(1\)\(9\)\(0\)\(36\)\(L\)

Vậy \(x\in\left\{1;4;9;0;36\right\}\)