Tam giác ABC có \(\widehat{A}\) nhỏ hơn 90 độ vẽ ra phía ngoài tam giác đó AD vuông AB; AD =AB, AE vuông góc với AC , AE=AC .Gọi H là chân đường vuông góc kẻ từ A đến BC .Chứng minh tia HA đi qua trung điểm của đoạn thẳng DE
Tam giác ABC có góc A nhỏ hơn 90 độ vẽ ra phía ngoài tam giác đó AD vuông AB; AD =AB, AE vuông góc với AC , E=AC CMR:
a, DC=BE
b, BCvuông BE
Xét tam giác ADC và tam giác ABE có
AD = AB ( gt )
Góc DAB = Góc CAE = 90 độ và cùng cộng với góc BAC
AC = AE ( gt )
Tam giác ADC bằng Tam giác ABE ( c.g.c )
DC = BE ( hai cạnh tương ứng )
Góc ADC = góc ACE ( hai góc tương ứng )
Gọi giao điểm của AB và DC là O, giao điểm dC và BE là I
Ta có góc ADO bằng góc ABI ( cmt ), góc ADO bằng góc ABD ( tam giác ADB vuông cân )
Xét tam giác ABO và tam giác OBI có
Góc DOA = góc BOI ( đối đỉnh )
AB = AD
Góc ADO = góc ABI
2 tam giác bằng nhAu
Góc DAO = Góc DIO ( hai giác tương ứng ) và bằng 90 độ
Be vuông góc với DC
Tam giác ABC có góc A nhỏ hơn 90 độ vẽ ra phía ngoài tam giác đó AD vuông AB; AD =AB, AE vuông góc với AC , E=AC CMR:
a, DC=BE
b, BCvuông BE
(mọi người trả lời nhanh giúp nha ! )
a)
Ta có :
\(\widehat{DAC}=\widehat{EAB}\left(=90^0+\widehat{BAC}\right)\)
=> \(\Delta DAC=\Delta EAB\left(c.g.c\right)\)
=> DC = EB ( hai cạnh tương ứng )
b)
Gọi giao điểm của DC với BE ; BA lần lượt là H và I
Vì \(\Delta DAC=\Delta EAB\)(c/m câu a)
=> \(\widehat{DAI}=\widehat{IBH}\)
Mà \(\widehat{DIA}=\widehat{HIB}\)( đối đnhr )
=> \(\widehat{DAI}=\widehat{IHB}=90^0\)
a) Xét \(\Delta ADC,\Delta ABE\) có:
AD = AB ( gt )
\(\widehat{DAC}=\widehat{EAB}\left(=90^o+\widehat{BAC}\right)\)
AE = AC ( gt )
\(\Rightarrow\Delta DAC=\Delta EAB\left(c-g-c\right)\)
\(\Rightarrow DC=BE\) ( 2 cạnh tương ứng ) ( đpcm )
b) Gọi giao điểm giữa DC và AB là K
giao điểm giữa DC và BE là M
Ta có: \(\widehat{ADK}+\widehat{K_1}=90^o\) ( do \(\Delta DAK\) có \(\widehat{DAK}=90^o\) ) (1)
Vì \(\Delta ADC=ABE\)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\) ( 2 góc tương ứng )
hay \(\widehat{ADK}=\widehat{KBE}\) (2)
Mà \(\widehat{K_1}=\widehat{K_2}\) ( đối đỉnh ) (3)
Xét (1), (2) và (3) ta có:
\(\widehat{ADK}+\widehat{K_1}=90^o\)
Mà \(\widehat{ADK}=\widehat{KBE}\)
\(\widehat{K_1}=\widehat{K_2}\)
\(\Rightarrow\widehat{KBE}+\widehat{K_2}=90^o\)
Xét \(\Delta KBM\) có \(\widehat{KBE}+\widehat{K_2}=90^o\Rightarrow\widehat{KMB}=90^o\)
\(\Rightarrow BE\perp DC\left(đpcm\right)\)
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
Cho tam giác ABC có \(\widehat{A}\) <90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Kẻ AH vuông góc với BC. CM: HA đi qua trung điểm DE
Cho tam giác ABC có góc A bé hơn 90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng: AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh DC=BE và DC vuông góc với BE
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
Các bn xem thử đúng ko nhé , mai mk kiểm tra 45' , cần ý kiến gấp
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
cho tam giác ABC có góc a nhỏ hơn 90 độ. vẽ ra phía ngoài tam giác 2 đoạn thẳng AD vuông góc và bằng AB , AE vuông góc và bằng AC . H là chân đường từ A đến BC . CM AH là đường đi qua trung điểm của DE
Tự vẽ hình nha!~Giải:
Kẻ AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN
Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
=> Tứ giác ACNB là hình bình hành
=> AB // CN và CN = AB = AD
Ta có : góc DAE + góc EAC + góc DAB + góc BAC
= 360*.gócDAE + góc EAC + góc DAB + góc BAC = 360*
=> góc DAE + góc BAC = 360* - góc EAC - góc DAB
= 360* - 90* - 90*
= 180*.góc DAE + góc BAC
= 360* - góc EAC - góc DAB
= 360* - 90* - 90* 180*
Mà góc ACN + góc BAC = 180*. góc ACN + góc BAC = 180* (góc trong cùng phía )
=> góc DAE = góc ACN + góc DAE = góc ACN
Xét ΔDAE và ΔNCA có:
AE = AC
góc DAE = góc ACN
AD = CN
=> Vậy ΔDAE = ΔNCA (c.g.c)
Ta có: góc FAE + góc EAC + góc CAH = 180*
<=> góc FAE + góc CAH = 180* - góc EAC
= 180* − 90* = 90*
Mà góc CAH = góc FEA ( vì ΔDAE = ΔNCA)
góc FAE + góc FEA = 90*
=> ΔAEF ⊥ tại F
=> AH ⊥ DE (đpcm)
Vẽ mãi cho bạn nè!~
Kết bạn!`Tích giùm mink nha!~
Cho tam giác ABC có góc A < 90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC.Chứng minh: DC=BE VÀ BC vuông góc với BE
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
Cho tam giác ABC có góc A nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân đỉnh A là MAB và NAC
a) Chứng minh MC = NB
b) Chứng minh MC vuông góc NB
giúp mik với
cho tam giac ABC có góc A nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác đó 2 đoạn thẳng AD vuông góc và bằng AB;AE vuông góc và băng AC
a)C/m DC=BE;DCvuông góc với BE
b)Gọi N là trung điểm của DE.Trên tia đối NA lấy M sao cho NA=NM
C/m AB=ME;Tam giác ABC=Tam giác EMA
c)C/M:MA vuông góc với BC
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE