Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
ARMY MINH NGỌC
Xem chi tiết
Hoàng Thị Lan Hương
3 tháng 8 2017 lúc 9:21

b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)

Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)

Đặt  \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)

Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)

Vậy \(x=3;y=-2013;z=2016\)

Nguyễn Đại Nghĩa
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 17:09

Đặt \(x=\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\)

\(\Rightarrow x^3=40+3\sqrt[3]{\left(20+14\sqrt[]{2}\right)\left(20-14\sqrt[]{2}\right)}.\left(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=40+6x\)

\(\Rightarrow x^3-6x-40=0\)

\(\Rightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)

\(\Rightarrow x=4\)

Vậy \(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}=4\)

Không Quan Tâm
Xem chi tiết
crgtdgfgfh
Xem chi tiết
Nguyễn Đình Toàn
7 tháng 11 2017 lúc 15:01

\(2\sqrt[3]{20+14\sqrt{2}}\)2

Nguyễn Anh Quân
7 tháng 11 2017 lúc 15:02

\(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2+\sqrt{2}\right)^3}\) = \(2+\sqrt{2}+2+\sqrt{2}\) = 4+\(2\sqrt{2}\)

Nguyễn Đình Toàn
7 tháng 11 2017 lúc 15:03

Lộn nha = \(2\sqrt[3]{20+14\sqrt{2}}\) mới đúng nha.

Nguyễn Thị Kiểm
Xem chi tiết
alibaba nguyễn
4 tháng 10 2016 lúc 20:18

A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

=> A3 = 40 + 6A

<=> A = 4

Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

Cha Eun Woo
Xem chi tiết