Tìm x sao cho \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
Tìm x sao cho \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
\(ĐKXĐ:...\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2-4=3x+2\sqrt{2x^2+5x+3}\left(1\right)\)
Phương trình trở thành :
\(a=a^2-4-16\Leftrightarrow a^2-a-20=0\Rightarrow\orbr{\begin{cases}a=5\\a=-4\left(l\right)\end{cases}}\)
Thay vào (1)
\(\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
tìm tập nghiệm của bpt: \(\sqrt{2x+3}-\sqrt{x+1}>3x+2\sqrt{2x^2+5x-3}-16\) có nghiệm
Giai phương trình
a) \(\sqrt{2x+3}+\sqrt{x+1}=3x+3\sqrt{2x^2+5x+3}-16\)
b) \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x-2}\)
c)\(5x+2\sqrt{x+1}-\sqrt{1-x}=-3\)
d) \(\sqrt{2016x^2-2005}+\sqrt{2005x^2-x-2004}=\sqrt{2006x^2+2x-2003}+\sqrt{2005x^2+x-2002}\)
Giải phương trình
a) \(\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{1-x^2}\right)=8\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)
\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
\(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)
\(ĐKXĐ:x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\) ta được
\(a^2-a-20=0\Rightarrow\orbr{\begin{cases}a=5\\a=-4\left(l\right)\end{cases}}\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}-2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
b ) \(ĐKXĐ:x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\orbr{\begin{cases}a=1\\a=-2\left(l\right)\end{cases}}\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{cases}\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1}\)
Dấu " = " xảy ra khi và chỉ khi \(x=0\)
Tìm x, biết :a) \(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
b) \(\sqrt{5x-2}=9\)
c) \(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
a: ĐKXĐ: x>=2/3
\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
=>\(x-2=9\sqrt{3x-2}+18\)
=>\(9\sqrt{3x-2}=x-2-18=x-20\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)
=>x>=20 và x^2-283x+562=0
=>x=281(nhận) hoặc x=2(loại)
b: ĐKXĐ: x>=2/5
\(\sqrt{5x-2}=9\)
=>5x-2=81
=>5x=83
=>x=83/5
c: ĐKXĐ: x>=-1; x<>8
\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
=>\(2x-16=5\sqrt{x+1}-15\)
=>\(\sqrt{25x+25}=2x-16+15=2x-1\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)
=>x=8(nhận) hoặc x=-3/4(loại)
\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
a) \(\sqrt{2x+3}\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)
b) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
a) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)
Đặt \(t=\sqrt{2x+3}+\sqrt{x+1}\left(t\ge0\right)\)
\(\Rightarrow t^2=3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}\)
\(\Rightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=t^2-3x-4\)
Pt <=> \(t=3x+t^2-3x-4-16\)
\(\Leftrightarrow t^2-t-20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}=25\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=21-3x\)
\(\Leftrightarrow x^2-146x+429=0\)
...
Câu b giải tương tự