Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Nhung
Xem chi tiết
Nguyễn Hoàng Pháp Quang
16 tháng 3 2023 lúc 22:00

Lỡ có sai sót thì thông cảm giúp mình nha:3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 2:47

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

Edogawa Conan
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
19 tháng 9 2020 lúc 15:32

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

Khách vãng lai đã xóa
Trịnh Ngọc Lực
Xem chi tiết
Đoàn Đức Hà
6 tháng 2 2021 lúc 21:43

Ta có: \(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)=n^2\left(n+1\right)\left[n^2\left(n+1\right)-2\left(n+1\right)\left(n-1\right)\right]\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Để \(A\)là số chính phương thì \(n^2-2n+2\)là số chính phương. 

Ta có: \(n^2-2n+2< n^2\)(do \(n>1\)

\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)nên \(n^2-2n+2\)không thể là số chính phương. 

Vậy \(A=n^6-n^4+2n^3+2n^2\)không là số chính phương. 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2017 lúc 2:48

Đáp án A

Ta có:  L = l i m 8 n 5 - 2 n 3 + 1 4 n 5 + 2 n 2 + 1 = l i m 8 - 2 n 2 + 1 n 5 4 + 2 n 3 + 1 n 5 = 2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2017 lúc 17:40

Đáp án là A

Nguyễn An
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 23:28

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

Nguyễn Ngọc Quỳnh Phương
Xem chi tiết
Cô Hoàng Huyền
27 tháng 7 2018 lúc 11:36

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.

hoàng a long
Xem chi tiết
Hermione Granger
6 tháng 10 2021 lúc 11:02

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2019 lúc 4:57

Điều kiện xác định của phân thức: n ≠ 2

Ta có:

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Vậy để N nguyên thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ n – 2 là ước của 5;  Ư ( 5 ) = - 1 ; 1 ; - 5 ; 5

n - 2= -1 ⇒ n =1;

n – 2 = 1 ⇒ n =3;

n – 2 = -5 ⇒ n = - 3;

n – 2 = 5 ⇒ n = 7;

vì n ∈ N nên n = 1; n = 3; n = 7

Vậy với n ∈ { 1; 3; 7} thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 có giá trị là số nguyên