Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Minh Trường
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 15:26

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+4\\ A=\left(x-y\right)^2+\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 8:15

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

Phạm Nam Khôi
Xem chi tiết

a: \(P=x^2+y^2-6x-2y+17\)

\(=x^2-6x+9+y^2-2y+1+7\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-1=0

=>x=3 và y=1

b: \(Q=x^2+xy+y^2-3x-3y+999\)

\(=x^2+x\left(y-3\right)+y^2-3y+999\)

\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)

\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)

c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)

\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)

\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)

\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)

d: \(S=x^2+26y^2-10xy+14x-76y+59\)

\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)

\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)

e: \(T=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)


Nguyên Minh Châu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2017 lúc 14:15

Phạm Ngọc Minh
Xem chi tiết
Big City Boy
Xem chi tiết
Thu Thao
25 tháng 12 2020 lúc 19:50

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

BiBo MoMo
Xem chi tiết
NgVH
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:33

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)

\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)

\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)