2cos^2x + cos4x= 0 có nghiệm là
Cho phương trình \(2cos^2x+cos4x=0\). Trong các số sau, số nào là họ nghiệm của phương trình trên:
\(I.x=\dfrac{\pi}{6}+k\dfrac{\pi}{4}II.x=-\dfrac{\pi}{6}+k\dfrac{\pi}{2}III.x=\dfrac{\pi}{6}+k\dfrac{\pi}{2}IV.x=-\dfrac{\pi}{6}+k\dfrac{\pi}{4}\)
Chọn câu trả lời đúng nhất.
A. Chỉ I, IV đúng
B. Chỉ I đúng
C. Chỉ IV đúng
D. I, II, III, IV cùng đúng
\(\Leftrightarrow cos2x+1+2cos^22x-1=0\)
\(\Leftrightarrow cos2x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
Không nghiệm nào trong 4 đáp án đúng
Hoặc là đề sai, hoặc là đáp án sai
Số nghiệm của phương trình 4 . cos 4 x - cos 2 x + 2 . sin 6 x = 0 trên đoạn 0 , 2 π là
A. 4
B. 2
C. 1
D. 3
Tìm Min, Max:
a, \(y=\left|Sinx\right|-\sqrt{Cosx}\)
b, \(y=12Sin^4x+Sin^2x+Cos4x+2Cos^2x\)
Nghiệm của phương trình cos 2 x + 3 sin x - 2 cos x = 0 là




Đáp án D
Tìm điều kiện để phương trình có nghĩa. Sau đó sử dụng công thức 2 cos 2 x = 1 - 2 sin 2 x để đưa phương trình đã cho về phương trình bậc 2 đối với sin x và giải phương trình này để tìm nghiệm. Bước cuối cùng là đối chiếu điều kiện để kết luận nghiệm.
Điều kiện
![]()
Với điều kiện trên phương trình đã cho trở thành

Nếu

không thỏa mãn điều kiện (1)
Vậy

ai làm họ với ạ cm răng A=sin^4x +2cos^2x -1/4 cos4x ko phụ thuộc vào x
Phương trình: c o s 4 x + sin 4 x + cos ( x - π 4 ) . sin ( 3 x - π 4 ) - 3 2 = 0 có nghiệm là:
![]()
![]()
![]()

1) \(4cos^24x+2\left(\sqrt{3}+\sqrt{2}\right)cos4x+\sqrt{6}=0\)
2) \(cos4x+2+sin\left(2x+\frac{3\pi}{2}\right)=2cos^2x\)
3) \(sin\left(x+\frac{\pi}{3}\right)+\sqrt{3}sin\left(\frac{\pi}{6}-x\right)=1\)
4) \(2cos\left(4x-\frac{\pi}{3}\right)+4cos2x=-1\)
5) \(cos^22x+cos^23x=sin^2x\)
6) \(sinx+\left(\sqrt{2}-1\right)cosx=1\)
7) \(cos2x-\left(\sqrt{3}+1\right)cosx+\frac{2+\sqrt{3}}{2}=0\)
1.
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\) và \(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)
2.
\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)
\(\Leftrightarrow2cos^22x-cos2x=cos2x\)
\(\Leftrightarrow cos^22x-cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
3.
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow...\)
4.
\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)
\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)
\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)
\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)
\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)
5.
\(cos^22x+\frac{1}{2}+\frac{1}{2}cos6x=\frac{1}{2}-\frac{1}{2}cos2x\)
\(\Leftrightarrow cos^22x+\frac{1}{2}\left(cos6x+cos2x\right)=0\)
\(\Leftrightarrow cos^22x+cos4x.cos2x=0\)
\(\Leftrightarrow cos2x\left(cos2x+cos4x\right)=0\)
\(\Leftrightarrow cos2x\left(2cos^22x+cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-1\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\cos4x-3\frac{1-tan^2x}{1 +tan^2x}+2=0\)
tính tổng các nghiệm
Tính tổng các nghiệm của phương trình
sin 2x + 4sin x - 2cos x - 4 = 0 trên đoạn 0 ; 100 π
A. 2476 π
B. 25 π
C. 2475 π
D. 100 π
Đáp án C
2sin x cos x + 4 sin x - 2 cos x - 4 = 0
