Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Im Yoona
Xem chi tiết
KAITO KID
17 tháng 11 2018 lúc 12:04

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

pham trung thanh
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
hà mai trang
Xem chi tiết
Akai Haruma
29 tháng 5 2018 lúc 13:27

Lời giải:

Ta thấy: \(a_n=3n^2+6n+13=3(n^2+2n+1)+10\)

\(=3(n+1)^2+10\)

Một số chính phương chia $5$ có thể dư $0,1,4$.

Do đó \((n+1)^2\equiv 1, 4\pmod 5\)

\(\Rightarrow a_n\equiv 3(n+1)^2+10\equiv 13, 22, 10\pmod 5\)

\(\Leftrightarrow a_n\equiv 2,3,0\pmod 5\)

Với \(a_n\not\vdots 5\Rightarrow a_n\equiv 2,3\pmod 5\)

Vậy $a_i,a_j$ không chia hết cho $5$ và có số dư khác nhau khi chia cho $5$ sẽ có một số dư $2$ và một số dư $3$

\(\Rightarrow a_i+a_j\equiv 2+3\equiv 5\equiv 0\pmod 5\)

Tức là $a_i+a_j$ chia hết cho $5$

Ta có đpcm.

Akai Haruma
29 tháng 5 2018 lúc 13:30

b)

Theo phần a, \(a_n=3(n+1)^2+10\equiv 2,3,0\pmod 5\)

Nếu $a_n$ là một số chính phương thì \(a_n\equiv 0\pmod 5\) do số chính phương chia $5$ chỉ dư $0,1,4$

\(\Leftrightarrow 3(n+1)^2+10\vdots 5\)

\(\Leftrightarrow 3(n+1)^2\vdots 5\)

\(\Leftrightarrow (n+1)^2\vdots 5\Rightarrow n+1\vdots 5\) (do 5 là số nguyên tố)

\(\Rightarrow (n+1)^2\vdots 25\)

Do đó $a_n=3(n+1)^2+10$ là một số chia hết cho $5$ nhưng không chia hết cho $25$, suy ra $a_n$ không thể là số chính phương.

Trí Tiên亗
Xem chi tiết
Inequalities
27 tháng 2 2020 lúc 16:29

a) Ta có: \(2018^n-1964^n⋮3\)

\(2032^n-1984^n⋮3\)

nên An chia hết cho 3

Mà \(2018^n-1984^n⋮17\)

\(2032^n-1964^n⋮17\)

nên An chia hết cho 17

Vậy A chia hết cho 51

Khách vãng lai đã xóa
Inequalities
27 tháng 2 2020 lúc 16:34

b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)

và An đồng dư 2^n + 7^n -2^n-4^n (mod9)

Vậy An chia hết cho 45 khi n có dạng 12k

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 2 2020 lúc 16:37

1. a) 

+) \(A_n=2018^n+2032^n-1964^n-1984^n\)

\(=\left(2018^n-1964^n\right)+\left(2032^n-1984^n\right)\)

Vì \(2018^n-1964^n⋮2018-1964\)=>\(2018^n-1964^n⋮54\)=>  \(2018^n-1964^n⋮3\)

\(\left(2032^n-1984^n\right)⋮3\)

=> \(A_n⋮3\)(1)

+) \(A_n=\left(2018^n-1984^n\right)+\left(2032^n-1964^n\right)\)

Vì : \(2018^n-1984^n⋮17\)và \(\left(2032^n-1964^n\right)⋮17\)

=> \(A_n⋮17\)(2)

Từ (1) ; (2) ; 3.17=51 và (3; 17) = 1

=> \(A_n⋮51\)

Khách vãng lai đã xóa
Minh Nguyễn Cao
Xem chi tiết
tth_new
10 tháng 8 2019 lúc 13:49

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)

*Chứng minh an là số tự nhiên.

Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:

\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n =  k + 1 hay:

\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)

\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)

Vậy ta có đpcm. 

Còn lại em chưa nghĩ ra

tth_new
10 tháng 8 2019 lúc 13:55

Cái bài ban nãy sửa a, b thành x và y nha! Không thôi nó trùng với đề bài. Tại quen tay nên em đánh luôn a, b

Nguyễn Linh Chi
10 tháng 8 2019 lúc 14:28

Nháp:

Với n=0 ; \(a:_n5\)dư 2

Với n=1 ; \(a:_n5\)dư 0

Với n=2 ; \(a:_n5\)dư 3

Với n=3 ; \(a:_n5\)dư 0

Với n=4 ; \(a:_n5\)dư 2

Với n=5 ; \(a:_n5\)dư 0

Với n=6 ; \(a:_n5\)dư 3

Với n=7 ; \(a:_n5\)dư 0

....

=> Rút ra kết luận: 

+) Với n =4k, \(a:_n5\)dư 2  hay \(a_{4k}\equiv2\left(mod5\right)\)

+) Với n =4k+1, 4k+3 \(a:_n5\)dư 0   hay \(a_{4k+1}\equiv0\left(mod5\right)\),\(a_{4k+3}\equiv0\left(mod5\right)\)

+) Với n =4k+2  \(a:_n5\)dư 3 hay \(a_{4k+2}\equiv3\left(mod5\right)\)

Chứng minh: Đặt : \(\frac{5-\sqrt{21}}{2}=x\)\(\frac{5+\sqrt{21}}{2}=y\)\(xy=2\)

a) Chứng minh : \(a_{4k}\equiv2\left(mod5\right)\)

Chứng minh quy nạp theo k

+) k=0, k=  vì \(a_{4.0}\equiv2\left(mod5\right);a_4\equiv2\left(mod5\right)\) 

+) Giả sự: đúng với k nghĩa là: \(a_{4k}\equiv2\left(mod5\right)\) 

Chứng minh đúng với k+1

Thật vậy: 

\(a_{4\left(k+1\right)}=x^{4k+4}+y^{4k+4}=x^{4k}.x^4+y^{4k}.y^4=\left(x^{4k}+y^{4k}\right)\left(x^4+y^4\right)-x^{4k}y^4-y^{4k}.x^4\)

\(=a_{4k}.a_4-x^4y^4\left(x^{4k-4}+y^{4k-4}\right)\equiv2.2-2^4.2\equiv2\left(mod5\right)\)

Vậy với mọi k \(a_{4k}\equiv2\left(mod5\right)\)

Chứng minh tương tự cho các trường hợp dư 0 và dư 3 sau

...

Cần tìm cách nhanh, ngắn gọn và hay hơn! 

   

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 22:32

Tham khảo:

undefined

undefined

Đoàn Thanh Bảo An
Xem chi tiết
Xin Lỗi Bạn
Xem chi tiết