Lời giải:
Ta thấy: \(a_n=3n^2+6n+13=3(n^2+2n+1)+10\)
\(=3(n+1)^2+10\)
Một số chính phương chia $5$ có thể dư $0,1,4$.
Do đó \((n+1)^2\equiv 1, 4\pmod 5\)
\(\Rightarrow a_n\equiv 3(n+1)^2+10\equiv 13, 22, 10\pmod 5\)
\(\Leftrightarrow a_n\equiv 2,3,0\pmod 5\)
Với \(a_n\not\vdots 5\Rightarrow a_n\equiv 2,3\pmod 5\)
Vậy $a_i,a_j$ không chia hết cho $5$ và có số dư khác nhau khi chia cho $5$ sẽ có một số dư $2$ và một số dư $3$
\(\Rightarrow a_i+a_j\equiv 2+3\equiv 5\equiv 0\pmod 5\)
Tức là $a_i+a_j$ chia hết cho $5$
Ta có đpcm.
b)
Theo phần a, \(a_n=3(n+1)^2+10\equiv 2,3,0\pmod 5\)
Nếu $a_n$ là một số chính phương thì \(a_n\equiv 0\pmod 5\) do số chính phương chia $5$ chỉ dư $0,1,4$
\(\Leftrightarrow 3(n+1)^2+10\vdots 5\)
\(\Leftrightarrow 3(n+1)^2\vdots 5\)
\(\Leftrightarrow (n+1)^2\vdots 5\Rightarrow n+1\vdots 5\) (do 5 là số nguyên tố)
\(\Rightarrow (n+1)^2\vdots 25\)
Do đó $a_n=3(n+1)^2+10$ là một số chia hết cho $5$ nhưng không chia hết cho $25$, suy ra $a_n$ không thể là số chính phương.