Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
HT2k02
14 tháng 4 2023 lúc 18:01

1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.

Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn

HT2k02
14 tháng 4 2023 lúc 18:03

Câu 2:

Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.

Khi này $x^2+y^2 =8k^6 = z^3$.

Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.

Anh dam ngoc
16 tháng 4 2023 lúc 12:31

Câu 2:

Chọn x=y=2k3;z=2k2 với knguyên dương.

Khi này x2+y2=8k6=z3.

Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.

yen dang
Xem chi tiết
yen dang
Xem chi tiết
cà thái thành
30 tháng 12 2018 lúc 9:01

khó quá

nguyen ha anh
30 tháng 12 2018 lúc 9:09

mình mới họclớp 5 à khó quá

Vũ Bảo Vy
Xem chi tiết
tth_new
5 tháng 8 2019 lúc 9:50

\(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\rightarrow\left(a;b;c\right)\) thì abc = 1. BĐT

\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\). Mà \(VT=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\).

Do đó ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{3}\ge a+b+c\).Hay:

 \(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\) 

\(\Leftrightarrow f\left(t\right)=t^2-3t\ge0\) với \(t=a+b+c\ge3\sqrt[3]{abc}=3\). Điều này hiển nhiên đúng do

\(f\left(t\right)=t^2-3t=t\left(t-3\right)\ge t\left(3-3\right)=0\) với mọi t > 3

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1 hay x = y = z

P/s: Sai thì chịu

han takato
Xem chi tiết
Trần Anh tuấn
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2018 lúc 22:07

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

Kiệt Nguyễn
Xem chi tiết
PTN (Toán Học)
22 tháng 2 2020 lúc 19:32

Ta giả sử 3 số đều =2

=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)

=>đpcm 

P/s : nhanh gọn lẹ :))

Khách vãng lai đã xóa
Tran Le Khanh Linh
10 tháng 3 2020 lúc 13:56

Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

Không mất tính tổng quát giả sử:

\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)

Ta có

+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)

\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)

<=> x>2(1)

+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM

Khách vãng lai đã xóa
Nguyễn Thành Nam
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2020 lúc 6:09

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\)

BĐT cần chứng minh: \(\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=a\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+b\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+c\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

Mà: \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{a}{bc}+\frac{b}{ac}\ge\frac{2}{c}\) ; \(\frac{c}{ab}+\frac{b}{ac}\ge\frac{2}{a}\)

\(\Rightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)

Khách vãng lai đã xóa
Hoàng nhật Giang
Xem chi tiết
Thợ Đào Mỏ Padda
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Lý hải Dương
3 tháng 5 2018 lúc 9:24

????????

Nguyễn Khang
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Khách vãng lai đã xóa