Tìm các số nguyên dương x, y, z thỏa mãn xz=y^2 và x^2+z^2+99=7y^2.
Các bạn giúp mik bài này vs nhé ! Cảm ơn cacban nhiều ! Yêu thương! <3
1) Cho a,b,c là các số nguyên dương thỏa mãn : a^2 + b^2 = c^2
CMR : ab chia hết cho cả a+b+c và a+b-c
2) Cho p là số nguyên tồ lớn hơn 3
CMR : p^2 -2017 chia hết cho 24
3)Tìm x,y,z thỏa mãn :
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
tính các số hữu tỉ x,y,z biết các số đó thỏa mãn điều kiện xy=1/3 ; yz=-2/5 và xz=-3/10
cho x,y,z,t là các số nguyên dương thỏa mãn \(x^2-y^2+t^2=21\) và \(x^2+3y^2+4z^2=101\). Tìm GTNN của biểu thức \(M=x^2+y^2+2z^2+t^2\)
Tìm các số thực x,y,z thỏa mãn (x−1)^2 +|3y−1|+|z+2| = 0.
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
Tìm các số nguyên x, y, z thỏa mãn: |x - y| + |y - z| + |z - x| = 2015
Giúp Hộ Mình Bài Này Với :
Tìm Các Cặp Số Nguyên Dương x,y Thỏa Mãn :
2x+ 3y = z2
Mình Đang CAàn Gấp Ạ
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm các số thực x,y,z thỏa mãn (x−1)2 +|3y−1|+|z+2| = 0.
Hãy giúp mk.TKS mn
`(x-1)^2>=0`
`|3y-1|>=0`
`|z+2|>=0`
`=>(x-1)^2+|3y-1|+|z+2|>=0`
Mà đề bài cho =0
`=>{(x-1=0),(3y-1=0),(z+2=0):}`
`=>{(x=1),(y=1/3),(z=-2):}`
Vậy `x=1` và `y=1/3` và `z=-2`
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\3y-1=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\\z=-2\end{matrix}\right.\)