tìm GTNN của
R=x^2-x+4+1/x^2-x+1
P=(4x+1)(4+x)/x
Q=x^2+2x+1/x+2
HELP ME !!!!!!!!!
TÌm GTNN:
1) 2x2 + 9y2 - 6xy - 6x - 12y + 2004.
2) x( x + 1)( x2 + x - 4).
3) ( x2 + 5x + 5)[( x + 2)( x + 3) + 1].
4) ( x - 1)(x - 3)( x2 - 4x + 5)
HELP ME !!!!!
TÌm GTNN:
1) 2x2 + 9y2 - 6xy - 6x - 12y + 2004.
2) x( x + 1)( x2 + x - 4).
3) ( x2 + 5x + 5)[( x + 2)( x + 3) + 1].
4) ( x - 1)(x - 3)( x2 - 4x + 5)
HELP ME !!!!!
Câu hỏi của Marilyna - Toán lớp 7 | Học trực tuyến
TÌm GTNN:
1) 2x2 + 9y2 - 6xy - 6x - 12y + 2004.
2) x( x + 1)( x2 + x - 4).
3) ( x2 + 5x + 5)[( x + 2)( x + 3) + 1].
4) ( x - 1)(x - 3)( x2 - 4x + 5)
HELP ME !!!!!
1)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)
\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(t=x^2+x\) ta có:
\(t\left(t-4\right)=t^2-4t+4-4\)
\(=\left(t-2\right)^2-4\ge-4\)
Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)
Đặt \(t=x^2+5x+5\) ta có:
\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
Đặt \(t=x^2-4x+3\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)
Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)
Vậy Min=-1 khi x=2
tìm x ,biết : ( 8x - 4x^2 -1 ) ( x^2 +2x +1 )= 4(x^2 +x+1 ) ...Please !! Heo mì !!!(Help me !!! )
\(\left(8x-4x^2-1\right)\left(x^2+2x-1\right)=4\left(x^2+x+1\right)\)
\(11x^2+6x-4x^4-1=4x^2+4x+4\)
\(11x^2+6x-4x^4-4x^2-4x-4=0\)
\(7x^2+2x-4x^4-5=0\)
\(\left(x-1\right)\left(x-1\right)\left(-4x^2-8x-5\right)=0\)
bn lm nốt nha , ko có dấu hoặc nên mk làm đến đây thôi
Cảm ơn nha ! Nhưng sao mình ko ấn đúng cho bạn được !? hic
Tìm GTNN của hàm số y=\(\sqrt[3]{x^4+2x^2+1}\) - \(\sqrt[3]{x^2+1}+1\)
help me
Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)
\(y=f\left(t\right)=t^2-t+1\)
\(minf\left(t\right)=f\left(1\right)=1\)
\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Cho P = \(\dfrac{x^4-x}{x^2+x+1}-\dfrac{2x^2+x}{x}+\dfrac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P
b) Tìm GTNN của P
c) Tìm các giá trị dương của x để Q= \(\dfrac{2x}{p}\) nhận giá trị là số nguyên
HELP ME ..
a: \(P=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}-\dfrac{x\left(2x+1\right)}{x}+\dfrac{2\left(x-1\right)\left(x+1\right)}{x-1}\)
\(=x^2-x-2x-1+2x+2\)
\(=x^2-x+1\)
b: \(P=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/2
Tìm x biết;
a, |x-1|+|x-2=1
b, |3x+4| = 2|2x-9|
c,|x+3|-2x=|x-4|
d, |x+2| + |x-5| + |x-1| = 7
e,8x - |4x+1|=x+2
help me :))