Câu 16: Chọn câu sai.
A. (x + y)2 = (x + y)(x + y)
B. x2 – y2 = (x + y)(x – y)
C. (-x – y)2 = (-x)2 – 2(-x)y + y2
D. (x + y)(x + y) = y2 – x2
Câu 17: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Câu 18: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 19: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 20:Tìm x biết (x – 6)(x + 6) – (x + 3)2 = 9
A. x = -9 B. x = 9 C. x = 1 D. x = -6
Câu 8: Phân tích đa thức 27x3 – \(\dfrac{1}{27}\)thành nhân tử ta được:
A.(3x+\(\dfrac{1}{3}\))(9x2-x+\(\dfrac{1}{9}\))
B.(3x–\(\dfrac{1}{3}\))(9x2+x+\(\dfrac{1}{9}\))
C.(27x–\(\dfrac{1}{27}\))(9x2+x+\(\dfrac{1}{9}\))
D.(27x+\(\dfrac{1}{27}\))(9x2+x+\(\dfrac{1}{9}\))
Câu 16: Chọn câu sai.
A. (x + y)2 = (x + y)(x + y)
B. x2 – y2 = (x + y)(x – y)
C. (-x – y)2 = (-x)2 – 2(-x)y + y2
D. (x + y)(x + y) = y2 – x2
Câu 17: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Câu 18: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 19: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 20:Tìm x biết (x – 6)(x + 6) – (x + 3)2 = 9
A. x = -9 B. x = 9 C. x = 1 D. x = -6
Câu 8: B
Bài 1: cho dãy tỉ số bằng nhau: a/b+c+d = b/a+c+d = c/a+b+d = d/a+b+c Tính B= a+b/c+d + b+c/a+d + c+d/a+ + d+a/b+c Bài 2: tìm x,y,z biết: y+2+1/x = x+y+2/y = x+y.3/z = 1/x+y+z
Viết tổng thành tích.
a) a.(b-c) + d.(c-d) + e.b-e.c
b) (x-y).a + (x+y).b+( z+y).a+( z-y).b
c) (x-y).a + (x+y).b + ( z+y).a + ( z-y).b
d) ( x+y+z ).a + (-x-y-z ).a+a.(x+y)+a.z
a. Biểu thức không viết được thành tích. Bạn xem lại.
b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)$
$=a(x+z)+b(x+z)=(x+z)(a+b)$
c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$
d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$
$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$
a)Chứng minh đẳng thức :
a) (x-y)-(x-z)=(z+x)- (y+x)
b) (x-y+z)-(y+z-x)-(x-y)= (z-y)-(z-x)
c) a(b+c)-b(a-c)=(a+b) c
a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
BL:
Ta có: \(\left(x-y\right)-\left(x-z\right)\)
\(=x-y-x+z\)
\(=z+x-y-x\)
\(=\left(z+x\right)-\left(y+x\right)\)
\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
BL:
Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)
\(=x-y+z-y-z+x-x+y\)
\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)
\(=\left(z-y\right)-\left(z-x\right)\)
\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
c) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) BL: Ta lại có: \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(=ab+ac-ba+bc\) \(=\left(ab-ba\right)+\left(ac+bc\right)\) \(=0+\left(a+b\right)c\) \(=\left(a+b\right)c\) \(\Rightarrow\) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(\rightarrow\) đpcm.Rút gọn:
a. x(x+4)(x-y)-(x^2-y)(x^2-1)
b.(y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)
c.(a+b-c)-(a-c)^2-2ab+2ab
d.(a+b+c)^2+(b+c-a)^2+(c+a-b)^2+(a+b-c)^2
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
Thu gọn các biểu thức sau:
A = a . (b - c - d) - a . (b + c - d)
B = x . (z - y) - z . (x + y) + y . (x - y)
C = -x . (x + y - z) - (x + y) . (z + x)
D = (a + b) . (c - d) - (a - b) . (c + d)
E = (a + b)2 + (a - b)2
F = (a - b)2 - (a + b)2
A = a. (b - c - d) - a . (b + c - d)
= ab - ac - ad - ab - ac + ad
= 0
B = x . (z -y) -z . (x+ y) + y . (x - y)
= xz -xy -zx -zy - yx -yy
= -xy -xy - zy - yy
= -y (x - x - z - y)
= -y (-z - y )
1 ) Tìm các số x , y , z biết :
a ) x / -2 = y / 3 = z / -5 và x - y + z = 20
b ) x / 10 = y / 6 = z / 21 và 5x + y - 2z = 28
c ) x / 3 = y / 4 ; 5y = 3z và 2x - 3y + z = 6
d ) x / 2 = y / 3 = z / 5 và x , y , z = 810
2 ) Cho a / b = b / c = c / a
Chứng minh rằng : a = b = c
3 ) Cho x = a / b + c = b / c + a = c / a + b với a + b + c khác 0 . Tính x ?
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha
Làm giúp mk nha
1.2x=3y;5y=7z;3x+5y-7z=30
Chứng minh rằng nếu cặp số (x;y) thỏa mãn a X x + b X y = c ; b X x + c X y = a ; c X x + a X y = b với a X b X c khác 0 thì a3 + b3 + c3 = 3 X a X b X c
CMR : nếu a( y+z)=b(x+z)=c(x+y) với a,b,c khác nhau và khác 0 . thì
y-z / a(b-c) = z-x / b(c-a) = x-y / c(a-b)
ĐK bài toán là x,y,z,a,b,c đều khác 0 => x^2-yz; y^2-xz; z^2-xy đều khác 0 (vì nếu 1 trong 3 số đó bằng 0 thì từ giả thiết suy ra cả 3 số đó cùng bằng 0 => x = y = z = 0, trái với ĐK đặt ra)
Từ giả thiết => a/(x^2-yz) = b/(y^2-xz) = c/(z^2-xy) (1)
Bình phương phân thức đầu, nhân 2 phân thức sau với nhau
a^2/(x^2-yz)^2 = bc/(y^2-xz)(z^2-xy) =>
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
Bạn giải ra từng bước
Rồi đi thử lại
Kết luận kết quả
~~~ Chào bạn ~~~