Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen khanh ly
Xem chi tiết
nguyễn tùng sơn
Xem chi tiết
Nguyễn Lê Trung Hiếu
Xem chi tiết
Đỗ Thanh Tùng
6 tháng 7 2016 lúc 21:50

ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)

CMTT:

\(a+c=-\frac{ac}{b}\)

\(b+c=-\frac{bc}{a}\)

Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)

T I C K ủng hộ nha mình cảm ơn

___________CHÚC BẠN HỌC TỐT NHA _____________________

Đặng Ngọc Thảo Nguyên
Xem chi tiết
Nguyễn Hữu Triết
11 tháng 4 2018 lúc 19:54

Bạn ơi! ABC khác 0 thì làm sao ạ+b+c=0 được bạn

Bellion
3 tháng 9 2020 lúc 14:56

           Bài làm :

Vì :

 \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Ta có :

 \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)

\(\Rightarrow A=-\frac{abc}{abc}\)

\(\Rightarrow A=-1\)

Vậy A=-1

Khách vãng lai đã xóa
Hạ Hiểu Khiết
Xem chi tiết
Jungkook Oppa
Xem chi tiết
Đinh Thùy Linh
9 tháng 7 2016 lúc 21:45

Thay 105 = abc

\(M=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}.\)a không thể = 0 vì tích abc = 105

\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1.\)vì bc+b+1 khác 0.

Bùi Ngọc Phương Nghi
10 tháng 7 2016 lúc 15:09

Nếu bạn thử thế số vào luôn thì sẽ dể làm hơn đó

vì ta có a.b.c= 105 nên a,b,c khác 0

ta có a.b.c=3.5.7=105

=> ta có a=3, b=5, c=7. Sau đó bạn thế số vào nhé

Bùi Ngọc Phương Nghi
10 tháng 7 2016 lúc 19:39

Bạn có thế bất kì số nào vào a,b,c. Chỉ cần là a.b.c= 105 là được

Đây là 1 cách dễ nhất, nhưng cũng không chắc lắm

btq
Xem chi tiết
Trần Thị Loan
14 tháng 7 2015 lúc 21:58

0,abc = 1: (a + b + c)

=> \(\frac{abc}{1000}=\frac{1}{a+b+c}\) => abc . (a+b +c) = 1000

Viết 1000 = 500.2 = 250.4 = 125.8 = 200 .5 = 100.10

thủ các cặp số trên, chỉ cố abc = 125 thỏa mãn 

Vậy a = 1; b = 2; c = 5 

Bùi Bích Thủy
8 tháng 5 2018 lúc 19:52

nhu tren

Đặng Ngọc Thảo Nguyên
Xem chi tiết
Arima Kousei
12 tháng 4 2018 lúc 18:42

Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\) 

Mà \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

\(\Rightarrow A=-\frac{c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(\Rightarrow A=-\frac{abc}{abc}\)

\(\Rightarrow A=-1\)

Vậy \(A=-1\)

Chúc bạn học tốt !!! 

phan thị thu huyền
12 tháng 4 2018 lúc 18:40

A=a+b/b.b+c/c.c+a/a

mà a+b+c =0

=> a+b=-c ; b+c=-a ; c+a=-b

thay vào A được:A= -c/b.-a/c.-b/a=-abc/abc=-1

Anh Quân Dương
13 tháng 4 2018 lúc 13:10

Ta có:

a+b+c=0 

=> a+b=-c, a+c=-b, c+b=-a

Mà theo đề bài thì A= \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)

<=> A= \(\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

<=> A= \(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

<=> A= \(\frac{-abc}{abc}\)

<=> A= -1

Nguyễn Thanh Khôi Cuber
Xem chi tiết
Nguyễn Thanh Khôi Cuber
13 tháng 3 2022 lúc 13:37

P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0 
Ngu vãi ko bt đúng không nx

Trần Tuấn Hoàng
13 tháng 3 2022 lúc 14:31

\(P=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

\(=\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{a^2+c^2-\left(-c-a\right)^2}+\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{a^2+c^2-\left(c+a\right)^2}+\dfrac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{a^2+c^2-a^2-2ac-c^2}+\dfrac{1}{a^2+b^2-a^2-2ab-b^2}\)

\(=\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\)

\(=\dfrac{a}{-2bca}+\dfrac{b}{-2acb}+\dfrac{c}{-2abc}\)

\(=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)