Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Khôi Cuber

Cho a+b+c=0 và abc khác 0,tính giá trị của biểu thức:
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

Nguyễn Thanh Khôi Cuber
13 tháng 3 2022 lúc 13:37

P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0 
Ngu vãi ko bt đúng không nx

Trần Tuấn Hoàng
13 tháng 3 2022 lúc 14:31

\(P=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

\(=\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{a^2+c^2-\left(-c-a\right)^2}+\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{a^2+c^2-\left(c+a\right)^2}+\dfrac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{a^2+c^2-a^2-2ac-c^2}+\dfrac{1}{a^2+b^2-a^2-2ab-b^2}\)

\(=\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\)

\(=\dfrac{a}{-2bca}+\dfrac{b}{-2acb}+\dfrac{c}{-2abc}\)

\(=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)


Các câu hỏi tương tự
Ngọc Minh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
anh van
Xem chi tiết
Ha Pham
Xem chi tiết
Minh Hiếu
Xem chi tiết
Dương Thảo Nhi
Xem chi tiết
tnt
Xem chi tiết