Giải phương trình
\(\sqrt[3]{6+x}+\sqrt[3]{3-x}+\sqrt[3]{\left(6+x\right)\left(3-x\right)=5}\)
thực hiện phép tính
\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{5+2\sqrt{5}+1}\)
giải phương trình
\(\sqrt{x-3}=6\)
\(\sqrt{\left(x-3\right)^2}=12\)
rút gọn biểu thức
a) \(P=\left(\dfrac{3-x\sqrt{x}}{3-\sqrt{x}}+\sqrt{x}\right).\left(\dfrac{3-\sqrt{x}}{3-x}\right)\) (với x≥0 ; x≠3; x≠9
b) \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\div\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\) (x >0)
c) \(A=\sqrt{3x-1}+3.\sqrt{12x-4}-\sqrt{6^2.\left(3x-1\right)}+\sqrt{5}\) với x≥ \(\dfrac{1}{3}\)
d) \(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) với a>0,a≠1, a≠ \(\pm\)2
Bài 1:
\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{5+2\sqrt{5}+1}\)
\(=\left|4-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=4-\sqrt{5}+\sqrt{5}+1=5\)
Bài 2:
a: ĐKXĐ: x>=3
\(\sqrt{x-3}=6\)
=>x-3=36
=>x=36+3=39(nhận)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(x-3\right)^2}=12\)
=>\(\left|x-3\right|=12\)
=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
Bài 3:
a: \(P=\left(\dfrac{3-x\sqrt{x}}{3-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\dfrac{3-\sqrt{x}}{3-x}\right)\)
\(=\dfrac{3-x\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\cdot\dfrac{3-\sqrt{x}}{3-x}\)
\(=\dfrac{3-x\sqrt{x}+3\sqrt{x}-x}{3-x}\)
\(=\dfrac{-\sqrt{x}\left(x-3\right)-\left(x-3\right)}{-\left(x-3\right)}=\dfrac{\left(x-3\right)\left(\sqrt{x}+1\right)}{x-3}=\sqrt{x}+1\)
b: \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
c: \(A=\sqrt{3x-1}+3\cdot\sqrt{12x-4}-\sqrt{6^2\left(3x-1\right)}+\sqrt{5}\)
\(=\sqrt{3x-1}+6\sqrt{3x-1}-6\sqrt{3x-1}+\sqrt{5}\)
\(=\sqrt{3x-1}+\sqrt{5}\)
d: \(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\)
\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{2\left(a-2\right)}{a+2}\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
Giải Phương trình
\(6\sqrt[3]{x-3}+\sqrt[3]{x-2}=5\sqrt[6]{\left(x-3\right)\left(x-2\right)}\) Với x>3
Giải phương trình: \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có
\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)
\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)
\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)
Do \(a,b\ge0\)nên a+b+1>0
\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)
Sau đó bn tự thay vào rồi giải tiếp nhé
giải bất phương trình vô tỉ sau
\(\sqrt[4]{\left(x-3\right)\left(5-x\right)}+\sqrt[4]{x-3}+\sqrt[4]{5-x}+6\left(x-1\right)\sqrt{3\left(x-1\right)}< =x^3-3x^2+3x+29\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
giải phương trình sau:
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
ĐK: \(-3\le x\le6.\)
Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)
Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)
Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)
Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)
Vậy x = 6 hoặc x = -3.
giải phương trình \(\sqrt[3]{x-7}+\sqrt[3]{x-3}=6\sqrt[6]{\left(x-3\right)\left(x-7\right)}\)
Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)
\(\Rightarrow a^2+b^2-6ab=0\)
Dễ thây a = 0 không là nghiệm.
Đặt \(b=ta\)
\(\Rightarrow a^2+t^2a^2-6ta^2=0\)
\(\Leftrightarrow t^2-6t+1=0\)
Làm nôt
Cho phương trình: P = \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) Rút gọn P.
b) Tìm x để P ≤ -2