cho x là số nguyên không chia hết cho 3
C/m (x2 - 1) chia hết cho 3
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
CHỌN Đ/S
1. Mọi số nguyên tố đều là số lẻ.
2. 128:124=122.
3. 173x23=343.
4. Mọi số nguyên tố có chữ số tận cùng là một trong các chữ số 1;3;7;9 .
5. Nếu mỗi số hạng của tổng không chia hết cho 3 thì tổng không chia hết cho 3 thì tổng không chia hết cho 3.
6. Nếu tổng của hai số chia hết cho 4 và một trong hai số chia hết cho 4 thì số hạng còn lại cho hết cho 4.
7. Số chia hết cho 2 và chia hết 5 có chữ số tận cùng là 0.
8. Nếu một thừa số của tích chia hết cho 5 thì tích chia hết cho 5.
9. Nếu mỗi số hạng của tổng chia hết cho 7 thì tổng chia hết cho 7.
10. Một số chia hết cho 2 thì chữ số tận cùng lá 4.
Mong mội người giúp đỡ "v"...
1.Sai
2.Sai
3.Đúng
4.Sai
5.Sai
6.Đúng
7.Đúng
8.Đúng
9.Đúng
10.Sai
tìm số nguyên x để:
a, 3 không chia hết cho x+2
b, 2x-1 không chia hết cho x-1
c, x+3⋮2
a: \(3⋮̸x+2\)
=>\(x+2\notin\left\{1;-1;3;-3\right\}\)
=>\(x\notin\left\{-1;-3;1;-5\right\}\)
b: \(2x-1⋮̸x-1\)
=>\(2x-2+1⋮̸x-1\)
=>\(1⋮̸x-1\)
=>\(x-1\notin\left\{1;-1\right\}\)
=>\(x\notin\left\{2;0\right\}\)
c: \(x+3⋮2\)
mà \(3⋮̸2\)
nên \(x⋮̸2\)
=>x\(\in\){2k+1;k\(\in\)Z}
bài 1: Tìm số nguyên n biết:
a) 4n - 5 chia hết cho n
b) -11 là bội của n - 2
c) n - 1 là ước của 3n + 2
d) 5n + 1 chia hết cho 2n - 3
bài 2: với số nguyên x, hãy chứng minh rằng
a) x(x + 5) - 7 không chia hết cho 2
b) 3x2 - 12x + 19 không chia hết cho 3
c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)
\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)
hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc N => n = { 1 ; -1 }
b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
viết cách làm giúp mình và đáp án nhé
mình đang cần gấp trong trưa nay
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
1) Cho n là một số không chia hết cho 3 c/m : n^2 chia cho 3 dư 1
2) Cho p là 1 số nguyên tố > 3 . Hỏi p^2 + 2003 là số nguyên tố hay hợp số ?
2, p là số nguyên tố lớn hơn 3 nên p lẻ
=> p^2 lẻ
=? p^2+2003 chẵn => nó có nhiều hơn 2 ước (1;2; chinhsnos...)
=> p^2+2003 là hợp số
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức f(x)=x2+x.g(x3)f(x)=x2+x.g(x3) không chia hết cho đa thức: x2−x+1