Tìm GTNN của biểu thức M=x4-2x3+3x2-4x-5
E = x4 - 2x3 + 3x3 - 4x + 2022
Tìm GTNN của biểu thức sau
Sửa đề:
\(E=x^4-2x^3+3x^2-4x+2022\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+2020\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+2020\)
Vì \(\left(x^2-x\right)^2+2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow E\ge2020\)
\(MinE=2020\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Cho p ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 và q ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x - 5
Tính p(x) + q(x) rồi tìm bậc của đa thức thu được
A. p ( x ) + q ( x ) = 6 x 3 - 6 x 2 + 6 x - 6 có bậc là 6
B p ( x ) + q ( x ) = 4 x 4 + 6 x 3 - 6 x 2 + 6 x + 6 có bậc là 4
C. p ( x ) + q ( x ) = 4 x 4 + 6 x 3 - 6 x 2 + 6 x - 6 có bậc là 4
D. P ( x ) + q ( x ) = 4 x 4 + 6 x 3 + 6 x - 6 c ó b ậ c l à 4
Ta có p(x) + q(x)
Bậc của đa thức p ( x ) + q ( x ) = 4 x 4 + 6 x 3 - 6 x 2 + 6 x - 6 l à 4
Chọn đáp án C
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
- Ta có:
Hệ số cần tìm là -11
Chọn đáp án C
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
+) Ta có
2 g ( x ) = 2 − x 4 + 2 x 3 − 3 x 2 + 4 x + 5 = − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 Ta có f ( x ) − 2 ⋅ g ( x ) = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 − − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 + 2 x 4 − 4 x 3 + 6 x 2 − 8 x − 10 = 5 x 4 + 2 x 4 + 4 x 3 − 4 x 3 + − 3 x 2 + 6 x 2 + ( 2 x − 8 x ) − 1 − 1 = 7 x 4 + 3 x 2 − 6 x − 11
Hệ số cần tìm là -11
Chọn đáp án C
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
E = x4 - 2x3 + 3x3 - 4x + 2022
F = -y2 + 2y - 6
Tìm GTLN của các biểu thức sau
Câu E bạn xem lại đề nha
F=\(-y^2+2y-6\)
\(=-\left(y^2-2y+6\right)\)
\(=-\left(y-1\right)^2-5\)
Vì \(-\left(y-1\right)^2\le0\forall y\)
\(\Rightarrow F\le-5\forall y\)
\(MaxF=-5\Leftrightarrow y=1\)
\(F=-y^2+2y-6=-\left(y^2-2y+1\right)-5=-\left(y-1\right)^2-5\le-5\forall y\in R\\ Vậy:max_F=-5\Leftrightarrow y=1\)
Sửa đề:
Tìm GTNN của E = x⁴ - 2x³ + 3x² - 4x + 2022
= (x⁴ - 2x³ + x²) + (2x² - 4x + 2) + 2000
= x²(x² - 2x + 1) + 2(x² - 2x + 1) + 2000
= x²(x - 1)² + 2(x - 1)² + 2000
Do (x - 1)² ≥ 0 với mọi x ∈ R
x² ≥ 0 với mọi x ∈ R
⇒ x²(x - 1)² + 2(x - 1)² ≥ 0 với mọi x ∈ R
⇒ x²(x - 1)² + 2(x - 1)² + 2000 ≥ 2000 với mọi x ∈ R
Vậy GTNN của E là 2000 khi x = 1
Tìm bậc của mỗi đa thức sau
a) f (x) = 3x2 + 2x3 - 6x - 2
b) g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
f (x) = 3x2 + 2x3 - 6x - 2
bậc của đa thức là: 3
g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
g(x) = ( 5x2 - 3x2 ) + ( 9 -2) + ( - 2x3 + 2x3 ) - 4x
g(x) = 2x2 + 7 - 4x
bậc của đa thức là : 2
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
Hệ số của x 4 trong đa thức Q ( x ) = 5 x 4 - x 5 - x 2 - 2 x 3 + 3 x 2 + 3 x - 2 x 4 + 5 là:
A. 2
B. 3
C. 5
D. 1
Thu gọn Q(x) = 5x4 - x5 - x2 - 2x3 + 3x2 + 3x - 2x4 + 5
= -x5 + 3x4 - 2x3 + 2x2 + 3x + 5
Hệ số của x4là 3. Chọn B
Giúp em với, em cảm ơn;;-;
Cho hai đa thức:
A(x) = 2x3 - x4 + 2x - 4 + 3x2 - 2x3 + x4
B(x) = x - 2
a) Thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm của biến
b) Thực hiện tính M(x)=A(x)+B(x)
N(x) = A(x) - B(x)
c) Tìm nghiệm của đa thức B(x)
`a,A(x) =2x^3 -x^4 +2x-4+3x^2 -2x^3+x^4`
`= ( 2x^3-2x^3) +(-x^4+x^4) + 2x -4+3x^2`
`= 0+0+ 2x -4+3x^2`
`= 3x^2 +2x-4`
`b, M(x)=A(x)+B(x)`
`M(x)= 3x^2 +2x-4 + x-2`
`= 3x^2 + 3x-6`
`b, N(x) = A(x) - B(x)`
`N(x)= 3x^2 +2x-4 -(x-2)`
`= 3x^2 +2x-4 -x+2`
`= 3x^2 + x -2`
`c,` Ta có :
`x-2=0`
`=> x=0+2`
`=>x=2`