Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
prolaze
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Xem chi tiết
lâm pham
22 tháng 3 2022 lúc 16:14

x thuộc 2019 ; 2020

y=2021

Ekachido Rika
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
7 tháng 3 2020 lúc 14:50

\(25-y^2=2020\left(x-2019\right)^2\)

\(\frac{25-y^2}{2020}=\left(x-2019\right)^2\)

\(\pm\sqrt{\frac{25-y^2}{2020}}=x-2019\)

\(x-2019=\pm\sqrt{\frac{25-y^2}{2020}}\)

\(x-2019=\orbr{\begin{cases}\sqrt{\frac{25-y^2}{2020}}\\-\sqrt{\frac{25-y^2}{2020}}\end{cases}}\)

\(x=-\sqrt{\frac{25-y^2}{2020}}+2019\)

\(x=\sqrt{\frac{25-y^2}{2020}}+2019;-\sqrt{\frac{25-y^2}{2020}}+2019\)

=> ko ra :v 

Khách vãng lai đã xóa
Nguyễn Nhật Nguyên
7 tháng 3 2020 lúc 14:52

có y2\(\ge\)0

Nên 25-y2\(\le\)25

Vậy 2020(x-2019)2\(\le\)25

(x-2019)2\(\le\)\(\frac{5}{404}\)<1

=>x-2019\(\le\)0 => x=2019

Thay x=2019 vào đẳng thức

=> 25-y2=2020(2019-2019)2

25-y2=0

y2=25

Vậy y=5

\(\le\)

Khách vãng lai đã xóa
Kiệt Nguyễn
7 tháng 3 2020 lúc 15:24

\(VP\ge0\Rightarrow0\le y\le5\)

Mà VP chẵn nên y lẻ nên \(y\in\left\{1;3;5\right\}\)

Loại th y = 1,3

Vậy y = 5

\(\Rightarrow x-2019=0\Rightarrow x=2019\)

Vậy có 1 nghiệm (2019;5)

Khách vãng lai đã xóa
ONLINE SWORD ART
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 22:33

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
17 tháng 8 2023 lúc 13:29

\(x^2-25=y\left(y+6\right)\)

\(\Leftrightarrow x^2-25=y^2+6y\)

\(\Leftrightarrow x^2-25-y^2-6y=0\)

\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)

\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)

Ta giải các hệ phương trình sau :

1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)

Nguyễn Minh Dương
Xem chi tiết
Akai Haruma
20 tháng 10 2023 lúc 15:33

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

Lê Hoài Phương
Xem chi tiết
Xem chi tiết
Ga
11 tháng 9 2021 lúc 15:38

Bạn tham khảo hình ảnh :

undefined

Cre : lazi.vn

Hok tốt

Khách vãng lai đã xóa
ღTruzgღ★ - FϏ
11 tháng 9 2021 lúc 15:41

bạn tham khảo:

undefined

nguồn: lazi.vn

~HT~

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2021 lúc 15:43

Ta có |x| + 2019|y - 2020| = 1

=> |x| \(\le\)1

mà |x| \(\ge0\forall x\)

=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)

Thay x = 0 vào |x| + 2019|y - 2020| = 1

=> 0 + 2019|y - 2020| = 1

<=> \(\left|y-2020\right|=\frac{1}{2019}\)

=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại) 

Thay x = 1 vào phương trình 

=> 2019|y - 2020| = 0 

<=> |y - 2020| = 0

<=> y - 2020 = 0

<=> y = 2020

Khi x = -1 => 2019|y - 2020| = 0

<=> |y - 2020| = 0

=> y - 2020 = 0

=> y = 2020

Vậy cặp (x;y) thỏa là (1;2020)  ; (-1;2020) 

Khách vãng lai đã xóa