Tìm các nguyên x,y thỏa mãn:
\(25-y^2=2020.\left(x-2019\right)^2\)
TÌM các số nguyên x,y thỏa mãn:
\(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=2020^{y-2021}\)
Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ
\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x
Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)
\(\Rightarrow y\ge2021\)
Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn
\(\Rightarrow y=2021\)
Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)
Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho
- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)
\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm
Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)
Tìm các số nguyên x,y thỏa mãn
(x-2019)\(^{2020}\)+\(\left(x-2020\right)^{2020}=2020^{y-2021}\)
Tìm \(x,y\in N\)thỏa mãn \(25-y^2=2020.\left(x-2019\right)^2\)
\(25-y^2=2020\left(x-2019\right)^2\)
\(\frac{25-y^2}{2020}=\left(x-2019\right)^2\)
\(\pm\sqrt{\frac{25-y^2}{2020}}=x-2019\)
\(x-2019=\pm\sqrt{\frac{25-y^2}{2020}}\)
\(x-2019=\orbr{\begin{cases}\sqrt{\frac{25-y^2}{2020}}\\-\sqrt{\frac{25-y^2}{2020}}\end{cases}}\)
\(x=-\sqrt{\frac{25-y^2}{2020}}+2019\)
\(x=\sqrt{\frac{25-y^2}{2020}}+2019;-\sqrt{\frac{25-y^2}{2020}}+2019\)
=> ko ra :v
có y2\(\ge\)0
Nên 25-y2\(\le\)25
Vậy 2020(x-2019)2\(\le\)25
(x-2019)2\(\le\)\(\frac{5}{404}\)<1
=>x-2019\(\le\)0 => x=2019
Thay x=2019 vào đẳng thức
=> 25-y2=2020(2019-2019)2
25-y2=0
y2=25
Vậy y=5
\(\le\)
\(VP\ge0\Rightarrow0\le y\le5\)
Mà VP chẵn nên y lẻ nên \(y\in\left\{1;3;5\right\}\)
Loại th y = 1,3
Vậy y = 5
\(\Rightarrow x-2019=0\Rightarrow x=2019\)
Vậy có 1 nghiệm (2019;5)
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)
Cho ba số x,y,z thỏa mãn: \(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{z}{2020}\)
CMR: \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn phương trình: \(x^2-25=y\left(y+6\right)\)
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow x^2-25=y^2+6y\)
\(\Leftrightarrow x^2-25-y^2-6y=0\)
\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)
\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
Ta giải các hệ phương trình sau :
1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)
Cho 3 số x, y, z thỏa mãn: \(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{z}{2020}\)
CMR: \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
HELP ME!
Lời giải:
Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$
$\Rightarrow x=2018a; y=2019a; z=2020a$
$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$
Mặt khác:
$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$
Từ $(1); (2)$ ta có đpcm.
tìm các số nguyên ko âm x;y thỏa mãn \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
Tìm các cặp số nguyên x, y thỏa mãn phương trình |x| + 2019|y − 2020| = 1
Bạn tham khảo hình ảnh :
Cre : lazi.vn
Hok tốt
bạn tham khảo:
nguồn: lazi.vn
~HT~
Ta có |x| + 2019|y - 2020| = 1
=> |x| \(\le\)1
mà |x| \(\ge0\forall x\)
=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)
Thay x = 0 vào |x| + 2019|y - 2020| = 1
=> 0 + 2019|y - 2020| = 1
<=> \(\left|y-2020\right|=\frac{1}{2019}\)
=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại)
Thay x = 1 vào phương trình
=> 2019|y - 2020| = 0
<=> |y - 2020| = 0
<=> y - 2020 = 0
<=> y = 2020
Khi x = -1 => 2019|y - 2020| = 0
<=> |y - 2020| = 0
=> y - 2020 = 0
=> y = 2020
Vậy cặp (x;y) thỏa là (1;2020) ; (-1;2020)