Tìm GTLN của A=\(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\)
Tìm GTLN của:
\(A=13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\) với \(0\le x\le1\)
\(A^2=\left(\sqrt{13}.\sqrt{13x^2-13x^4}+3\sqrt{3}.\sqrt{3x^2+3x^4}\right)^2\)
\(\Rightarrow A^2\le\left(13+27\right)\left(16x^2-10x^4\right)=40\left[\frac{32}{5}-10\left(x^2-\frac{4}{5}\right)^2\right]\le256\)
\(\Rightarrow A\le16\Rightarrow A_{max}=16\) khi \(x^2=\frac{4}{5}\)
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Bài 1 : Tìm GTNN
\(A=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Bài 2 : Giải phương trình
a) \(\sqrt{2+2x-x^2}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
b ) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{9-\left(3x-1\right)^2}\)
Bài 2 : Tìm GTLN
\(P=\sqrt{x-5}+\sqrt{13-x}\)
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
\(P=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)
Tính giá trị của P với x=\(9-4\sqrt{5}\)
Tìm GTLN của biểu thức P
Ta có: \(x=9-4\sqrt{5}\)
⇔ \(\sqrt{x}=\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}\)
⇔ \(\sqrt{x}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|\)
⇔ \(\sqrt{x}=\sqrt{5}-2\)
Khi đó: \(P=\dfrac{1-\sqrt{5}+2}{\sqrt{5}-2+2}=\dfrac{3-\sqrt{5}}{\sqrt{5}}\)
Với x>4, x≠9, tìm GTLN của \(\dfrac{3x+3}{2-\sqrt{x}}\)
A=\(\sqrt{x+6\sqrt{x-9}}-\sqrt{x+4\sqrt{x-4}}-\sqrt{2x-13+2\sqrt{\left(x-4\right)\left(x-9\right)}}\)
a) Rút gọn A
Tìm x để A=4
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)