Tìm x,y,z
\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
2x2 +2y2 +z2 + 25 -6y -2xy -8x +2z(y-x)=0
tìm x,y,z
Ta có: \(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(y^2-6y+9\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)z+z^2=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left[\left(x-y\right)^2-2\left(x-y\right)z+z^2\right]=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left(x-y-z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y-3\right)^2=0\\\left(x-y-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
Tìm x,y,z thoả mãn
2x²+2y²+z²+25-6y-8x-2z(y-x)=0
\(\hept{\begin{cases}3x^2+2y+1=2z\left(x+2\right)\\3y^2+2z+1=2x\left(y+2\right)\\3z^2+2x+1=2y\left(z+2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+2y+1=2xz+4z\\3y^2+2z+1=2xy+4x\\3z^2+2x+1=2yz+4y\end{cases}}}\)
Cộng 3 vế vào rồi chuyển vế ta được
\(2x^2+2y^2+2z^2-2xy-2yz-2zx+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2 +\left(z-x\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Dễ thấy VP > 0
Dấu "=" khi x = y = z = -1
Cho 2x^2 + 2y^2 + 2z^2 + 2xy + 2yz +2xz +10x +6y +34 =0 Tìm x, y,z
Ta có:
\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)
Không tồn tại x,y,z thỏa mãn đề bài
Cho x,y,z>0 và\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}\)
Tính P=\(\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
Phân tích thành nhân tử
a) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
b) \(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
cho x;y;z là các số thực dương thỏa mãn x;y;z>.CMR:\(\left(x^2+2yz\right)\left(y^2+2zx\right)\left(z^2+2xy\right)\ge xyz\left(x+2y\right)\left(y+2z\right)\left(z+2x\right)\)
chứng minh \(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
thì x=y=z
b) \(\left(a+b+c+d\right)\left(a-b+c-d\right)=\left(a^2-b+c-d\right)\left(a+b-c-d\right)\)
thì ad=bc
Chứng minh không tồn tại x,y,z thỏa mãn
a) \(5x^2+10y^2-6xy-4x-2y+3\)=0
b) \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Bạn tự tách hđt nhé! Gõ mỏi tay :v~
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
⇔ \(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
⇔ \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)
Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
⇒ \(x=y=z\)
j lắm thế :)))
Bài 2 : ~ bài 1 ngán quá =)))
a, Có
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTLN của
\(P=\dfrac{x}{\left(2x+y+z\right)^2}+\dfrac{y}{\left(2y+x+z\right)^2}+\dfrac{z}{\left(2z+y+x\right)^2}\)
Chắc đề là \(x+y+z=3\)
Ta có:
\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)
\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Mặt khác:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)
\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)
Dấu "=" xảy ra khi \(x=y=z=1\)