giải phương trình
\(\frac{-3x^3+10x}{x^2}=0\)
giải phương trình 3x^5-10x^4+3x^3+3x^2-10x+3=0
\(3x^5-10x^4+3x^3+3x^2-10x+3=0\)
___________
Nháp:
Ta nhẩm ngiệm ra được -1 vì tổng các hệ số có số mũ chẵn bằng tổng các hệ số có số mủ lẻ
\(\left\{{}\begin{matrix}3+3-10=-4\\-10+3+3=-4\end{matrix}\right.\)
Theo sơ đồ hoocner ta có:
3 | -10 | 3 | 3 | -10 | 3 | |
-1 | 3 | -13 | 16 | -13 | 3 | 0 |
\(\Rightarrow\left(x-1\right)\left(3x^4-13x^3+16x^2-13x+3\right)\)
Tiếp dùng phương pháp đoán nghiệm ta có thể phân tích thành
\(\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x-1\right)\)
_____________________________________
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
giải các phương trình sau:
a \(\sqrt{3x^2-17x+4}=3x-2\)
b \(2x^2-10x-3\sqrt{x^2-5x+4}+6=0\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
giải các phương trình sau :
a, x^2 - 10x = -25
b, 4x^2 - 4x = -1
c, ( 1 - 2x )^2 = ( 3x - 2 )^2
d, ( x - 2 )^3 + ( 5 - 2x )^3 = 0
\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
Giải các phương trình sau:
a) \(x^3-2x^2-5x+6=0\)
b) \(\left|5-3x\right|=3x-5\)
c) \(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}+\frac{9}{x^2+3x-18}\)
d) \(x^2-y^2+2x-4y-10=0\)với x, y nguyên dương
a) \(x^3-2x^2-5x+6=0\)
\(x^3-x^2-x^2+x-6x+6=0\)
\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)
\(a,x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)
\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)
Vậy \(x\in\left\{-2;1;3\right\}\)
P/S: (h) là hoặc nhé
\(b,\left|5-3x\right|=3x-5\)
*Nếu \(x\ge\frac{5}{3}\)thì
\(3x-5=3x-5\)Luôn đúng \(\forall x\ge\frac{5}{3}\)
*Nếu \(x< \frac{5}{3}\)thì
\(5-3x=3x-5\)
\(\Leftrightarrow6x=10\)
\(\Leftrightarrow x=\frac{5}{3}\)(loại vì ko thỏa mãn khoảng đag xét)
Vậy \(x\ge\frac{5}{3}\)
Cách khác : dùng tính chất của trị tuyệt đối
\(\left|5-3x\right|=3x-5\)
Vì \(VT\ge0\Rightarrow VP\ge0\)
\(\Leftrightarrow3x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{3}\)
Vậy ...........
giải các bất phương trình sau
x^2+2x+3>2
(x+5)(3x^2+2)>0
21x-10x^2+9 <0
tớ cần gấp ạ làm ơn giải giúp tớ
`x^2+2x+3>2`
`<=>x^2+2x+1>0`
`<=>(x+1)^2>0`
`<=>x+1 ne 0`
`<=>x ne -1`
`(x+5)(3x^2+2)>0`
Vì `3x^2+2>=2>0`
`=>x+5>0<=>x>-5`
c) Ta có: \(21x-10x^2+9< 0\)
\(\Leftrightarrow10x^2-21x-9>0\)
\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)
\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)
giải phương trình: \(\left(2x^2-10x+12\right)\sqrt{\frac{x+2}{x-2}}=-x^3+3x^2+12x-26\)
giải phương trình
a)x*4+x*3-4x*2+x+1=0
b)x*4+x*3-10x*2+x+1=0
c)x*4+3x*3-14x*2-6x+4=0