Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Duong Thu
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 14:19

\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)

Vũ Duy Nhật
Xem chi tiết
trần hân di
Xem chi tiết
Vũ Duy Nhật
Xem chi tiết
Trần Thành Lương
26 tháng 7 2023 lúc 15:34

ko biết

 

phuong tu khanh
Xem chi tiết
Minh Nhân
16 tháng 7 2021 lúc 8:48

\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Bùi Võ Đức Trọng
16 tháng 7 2021 lúc 8:51

A= x2 + x + 1

A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)

A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)

Vậy, x2 + x + 1>0 với mọi x

Đúng thì like giúp mik nha. Thx bạn

Phía sau một cô gái
16 tháng 7 2021 lúc 8:57

         \(x^2+x+1\)

\(=\)   \(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\)    \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\)    \(\left(x+\dfrac{1}{2}\right)^2+\left(1-\dfrac{1}{4}\right)\)

\(=\)     \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì \(\left(x+\dfrac{1}{2}\right)^2\) luôn dương với mọi \(x\)     ( 1 )

mà cộng thêm 1 lượng \(\dfrac{3}{4}\)  luôn dương   ( 2 )

Từ ( 1 ) và ( 2 ):     ⇒    \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) luôn dương

⇒   \(x^2+x+1\) luôn dương với mọi giá trị của x

vuong trung kien
Xem chi tiết
Cô Hoàng Huyền
1 tháng 9 2017 lúc 8:54

Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)

Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.

ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Vũ Duy Nhật
Xem chi tiết

B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17

B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)

B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2

B = (\(x-y\) + 1)2 + (y - 4)2

(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 

B ≥ 0

Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương. 

 

Vũ Duy Nhật
26 tháng 7 2023 lúc 7:58

Giải giúp mik với mik cần gấp