\(\frac{x+5\sqrt{x}+1}{\sqrt{x}}=A\) . TÌM GTNN( x lớn hơn hoặc bằng không)
Cho A = \(\dfrac{x}{\sqrt{x}-1}\) (x lớn hơn hoặc bằng 0, x khác 1)
Tìm GTNN của \(\sqrt{A}\)
\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)
Dấu "=" xảy ra khi \(x=0\)
Tìm GTNN, GTLN của bt sau:
A= \(x-12\sqrt{x}\)(x lớn hơn hoặc bằng 0)
B=\(-x+6\sqrt{x}+2\)(x lớn hơn hoặc bằng 0)
C=\(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)((x lớn hơn hoặc bằng 0, x khác 9)
D=\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)(x lớn hơn hoặc bằng 0, x khác 1)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
\(A=x-12\sqrt{x}\\ =x-12\sqrt{x}+36-36\\ =\left(\sqrt{x}-6\right)^2-36\ge-36\text{ }\forall x\ge0\)
Vậy \(A_{Min}=-36\text{ }khi\text{ }x=36\)
B tương tự
\(C=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\dfrac{8}{\sqrt{x}+3}\)
\(Do\text{ }\sqrt{x}\ge0\forall x\\ \Rightarrow\sqrt{x}+3\ge3\forall x\\ \Rightarrow\dfrac{8}{\sqrt{x}+3}\le\dfrac{8}{3}\forall x\\ \Rightarrow C=1-\dfrac{8}{\sqrt{x}+3}\ge-\dfrac{5}{3}\forall x\)
Vậy \(C_{Min}=-\dfrac{5}{3}\text{ }khi\text{ }x=0\)
D tương tự
Tìm GTNN của \(A=\frac{x+16}{\sqrt{x}+3}\)(x khác 1;x lớn hơn hoặc bằng 0)
\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)
\(A=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=4\)
Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\) <=> \(\sqrt{x}+3=5\) <=> x = 4
Vậy....
Câu 1: Tìm GTNN của a - \(\sqrt{a}\) + 1 với a không âm
Câu 2: Tìm GTLN của \(\sqrt{1+2a-a^2}\)
Câu 3: Tìm GTNN của x - 2\(\sqrt{x-1}\) với x lớn hơn hoặc bằng 1
Câu 1:
\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)
\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm
\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)
Câu 2:
\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)
Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định
\(\Rightarrow 2-(a-1)^2\leq 2\)
\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)
Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)
Câu 3:
ĐK: $x\geq 1$
\(x-2\sqrt{x-1}=(x-1)-2\sqrt{x-1}+1\)
\(=(\sqrt{x-1}-1)^2\geq 0, \forall x\geq 1\)
Vậy GTNN của biểu thức là $0$
Dấu "=" xảy ra khi \((\sqrt{x-1}-1)^2=0\Leftrightarrow x=2\)
rút gọn biểu thức với lớn hơn hoặc bằng 0: A=\(\left(1-\frac{1}{\sqrt{x+1}}\right)\left(x+\sqrt{x}\right)\)
P=\(\left(\frac{3}{x-\sqrt{x-2}}+\frac{1}{\sqrt{x+1}}\right)\left(\sqrt{x-2}\right)\) với x lớn hơn hoặc bằng 0 và x khác 4
P=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\), x khác 1, x lớn hơn hoặc = 0.
Hãy tìm GTNN của P
Lời giải:
\(P=\frac{2(\sqrt{x}+1)-3}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}\)
Vì $\sqrt{x}\geq 0$ với mọi $x\neq 1; x\geq 0$
$\Rightarrow \sqrt{x}+1\geq 1\Rightarrow \frac{3}{\sqrt{x}+1}\leq 3$
$\Rightarrow P\geq 2-3=-1$
Vậy $P_{\min}=-1$. Giá trị này đạt tại $x=0$
tìm gtnn
a> A= \(x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)(y lớn hơn hoặc bằng 0)
b>B = x8-x5-x4+x2-x+1
1 ) Cho hai số thực dương x,y thỏa mãn x+y lớn hơn hoặc bằng 10. Tìm GTNN:
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
2 ) Chứng minh rằng :
\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
Bài 1 :
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
Áp dụng bất đẳng thức Cô - si cho 2 số không âm
\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\left(1\right)\)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)
Theo đề bài ta có : \(x+y\ge10\) suy ra
\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\left(3\right)\)
Cộng (1) ; (2) và (3) vế với vế ta được :
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)
Dấu " = " xay ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=25\\y^2=25\end{matrix}\right.\)
Vì x ; y dương nên \(\left(x;y\right)=\left(5;5\right)\)
Bài 2 :
Đặt \(x=a+b=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow x^3=2+\sqrt{5}+2-\sqrt{5}+\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.x\)
\(\Leftrightarrow x^3=4+\sqrt[3]{4-5}.x\)
\(\Leftrightarrow x^3=4-3x\)
\(\Leftrightarrow x^3+3x-4=0\)
\(\Leftrightarrow x^3-x^2+x^2-x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)
Vì \(x^2+x+4=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)
Nên \(x-1=0\Leftrightarrow x=1\)
Vậy \(x=a+b=1\)
\(\Rightarrow\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\left(đpcm\right)\)
Chúc bạn học tốt !!
Tìm GTNN của \(\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}\) với x lớn hơn hoặc = 1
\(A=\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}=\frac{x-1+3\sqrt{x-1}+2}{x-1+4\sqrt{x-1}+3}\)
\(=\frac{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}+2\right)}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}+3\right)}\)
\(=\frac{\sqrt{x-1}+2}{\sqrt{x-1}+3}\)
\(=1-\frac{1}{\sqrt{x-1}+3}\)
Ta có : \(\sqrt{x-1}\ge0\)
\(\Leftrightarrow\sqrt{x-1}+3\ge3\)
\(\Leftrightarrow\frac{1}{\sqrt{x-1}+3}\le\frac{1}{3}\)
\(\Leftrightarrow1-\frac{1}{\sqrt{x-1}+3}\ge1-\frac{1}{3}=\frac{2}{3}\)
\(\Rightarrow A\ge\frac{2}{3}\)
\(\text{GTNN của A bằng }\frac{3}{2}\)
\(\text{Dấu }=\text{xảy ra }\Leftrightarrow x=1\)