Tìm GTLN của
G= 2x^2 +10x -1
Tìm GTLN (hoặc GTNN) :
B=2x2+10x-1
\(B=2x^2+10x-1\)
\(\Rightarrow2B=\left(4x^2+20x+25\right)-27\)
\(\Rightarrow2B=\left(2x+5\right)^2-27\ge-27\forall x\)
\(\Rightarrow B\ge-\frac{27}{2}\)
Dấu bằng xảy ra khi: \(\left(2x+5\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Tìm GTLN của
\(B=\frac{5x^2-10x+42}{x^2+2x+7}\)
\(C=\frac{2x}{x^2+2x+1}\)
Tìm GTLN hoặc GTLN:
a) `A = (5x^2 - 24x + 32)/(x^2 - 4x + 4)`
b) `B = ( 10x^2 + 24x + 15)/(x^2 + 2x + 1)`
\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)
\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)
\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)
\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\)
B max ko tồn tại
tìm GTLN và GTNN
\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\)
\(đk:x^2+2x+2\ne0\Leftrightarrow x^2+2x+1+1=\left(x+1\right)^2+1\ne0\left(luôn-đúng\right)\)
\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\Leftrightarrow A\left(x^2+2x+2\right)=x^2+10x+16\)
\(\Leftrightarrow Ax^2+2Ax+2A-x^2-10x-16=0\)
\(\Leftrightarrow x^2\left(A-1\right)+x\left(2A-10\right)+2A-16=0\)
\(\Rightarrow\Delta\ge0\Leftrightarrow\left(2A-10\right)^2-4\left(A-1\right)\left(2A-16\right)\ge0\)
\(\Leftrightarrow4A^2-40A+100-4\left(2A^2-18A+16\right)\ge0\)
\(\Leftrightarrow-4A^2+32A+36\ge0\Rightarrow-1\le A\le9\Rightarrow\left\{{}\begin{matrix}MinA=-1\\MaxA=9\end{matrix}\right.\)
\(tại\) \(MinA=-1\) \(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=-3\)
\(tại\) \(MaxA=9\) \(dấu"='\) \(xảy\) \(ra\Leftrightarrow x=-0,5\)
Tìm GTLN của:
a,\(A=\frac{5}{x^2-6x+1}\)
b,\(B=\frac{2}{2x^2+10x-1}\)
a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.
\(x^2-2x3+3^2-8\)
\(\left(x-3\right)^2-8\ge-8\)
Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)
Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3
Thay x = 3 vào biểu thức a ta được:
\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)
Vậy GTLN của A là -5/8
vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\) =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\) vậy GTNN \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)
Tìm GTLN của biểu thức
B=2012-2x2-y2+2xy-10x+10y
Tìm GTLN của biểu thức
B=2012-2x2-y2+2xy-10x+10y
Tìm GTLN của biểu thức
B=2012-2x2-y2+2xy-10x+10y
Tìm GTLN hoặc GTNN của đa thức sau
g(x) = 2013 - x^2 + 10x