Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ANH HOÀNG
Xem chi tiết
Minh Hiếu
5 tháng 10 2021 lúc 19:15

a) \(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 22:21

c: Ta có: 5x=8y=20z

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)

Do đó: x=24; y=15; z=6

Trần Đức Vinh
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Ngô Trọng Tấn
Xem chi tiết
ST
18 tháng 8 2017 lúc 16:55

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

l҉o҉n҉g҉ d҉z҉
18 tháng 8 2017 lúc 16:59

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

Nghiêm Thủy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 21:37

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{y-x}{11-8}=\dfrac{-42}{3}=-14\)

Do đó: x=-112;y=-154

Vân Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:41

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Do đó: x=-70; y=-135; z=-84

phạm lê quỳnh anh
12 tháng 10 2021 lúc 21:48

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Lấp La Lấp Lánh
13 tháng 10 2021 lúc 0:21

a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\)

 \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x+z-y}{10+12-15}=-\dfrac{49}{7}=-7\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{-2}\\\dfrac{x}{6}=\dfrac{z}{7}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{7}=\dfrac{3x}{18}=\dfrac{2y}{-8}=\dfrac{3x-z+2y}{18-7-8}=\dfrac{3}{3}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.6=6\\y=1.\left(-4\right)=-4\\z=1.7=7\end{matrix}\right.\)

 

Trần Vũ Phương Thảo
Xem chi tiết
Zata
Xem chi tiết
Akai Haruma
27 tháng 9 2023 lúc 20:06

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

duc cuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:00

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{3}=k\\\dfrac{y}{4}=k\\\dfrac{z}{11}=k\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=11k\end{matrix}\right.\)

Ta có: \(A=\dfrac{y+z-x}{x+z-y}\)

\(=\dfrac{4k+11k-3k}{3k+11k-4k}\)

\(=\dfrac{12k}{10k}=\dfrac{6}{5}\)

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 21:01

Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{11}=\dfrac{y+z-x}{12}=\dfrac{x+z-y}{10}\\ \Rightarrow\dfrac{y+z-x}{x+z-y}=\dfrac{12}{10}=\dfrac{6}{5}\)